New species of Acanthodrilinae and a new genus of Perionychini (Oligochaeta, Megascolecidae) from New Caledonia, their phylogeny and zoogeography

by B. G. M. Jamieson and J. D. Bennett *

Abstract

Seven new and two previously known spceies of Acanthodrilus from New Caledonia are described : A. chabaudi, A. chevalieri, A. fabresi, A. koghis, A. longicystis, A. paripapillatus and A. ruber spp. nov., A. cavaticus and A. paniensis Michaelsen, 1913. The genus Acanthodrilus is redefined and its close relationship with the Australian Diplotrema and North American Diplocardia discussed. A Cormer Gondwanan or Pangean distribution of acanthodrilcs is suggested. Plutellus (Diplotrema) sarasini Michaelsen is redescribed from new material and is made the typcspecies of the new genus Eudiplotrema to which the other four New Caledonian species attributed to Diplotrema by Michaelsen are assigned. Plutellus pygmaeus Michaelsen is transferred to Diporochaeta. The phylogeny of Eudiplotrema in relation to Diporochaeta, Graliophilus and Simsia is investigated and it is concluded that these gencra evolved before the Cretaceous separation of New Caledonia from Australia and that Diporochaeta originated after the Triassic separation of Africa from Gondwanaland but hefore rifting of India.

Résumé. - Deux espèces déjà connues et sept nouvelles d’Acanthodrilhs de Nouvellc-Calćdonie sont décrites : A. chabaudi, A. chevalieri, A. fabresi, A. koghis, A. longicystis, A. paripapillatus et A. ruber n. spp., A. casaticus et A. paniensis Wichaelsen, 1913. Le genre Acanthodrilus est redéfini et son ćtroite parenté avec le genre australien Diplotrema et le genre nord-américain Diplocardia est discutće. Une distribution gondwanienne ou pangéenne est suggérée pour les Acanthodriles. Plutellus (Diplotrema) sarasini Michaelsen est redécrite à partir d'un nouveau matériel et devient l'espéce-type du nouvcau genre Eudiplotrema; les quatre autres espèces de Nouvelle-Calédonie attribuées à Diplotrema par Michaelsen sont transférées dans ce nouveau genrc. Plutellus pygmaeus Michaelsen est transférée dans le genre Diporochaeta. Les relations phylogéniques d'Eudiplotrema avec Diporochaeta, Graliophilus et Simsia sont étudiées; la conclusion cst que ces genres ont évolué avant la séparation crétacée entre Nouvelle-Calédonie ct Australie et que les Diporochaeta se sont formés après la séparatiou triasique entre Afrique et Gondwana mais avant la séparation de l'Inde.

Introduction

New Caledonia is a large island, approximately 235 km long and 42 km wide, lying between the Tropic of Capricorn and latitude 20° South and straddling longitude 165° East, about 1365 km from the East coast of Australia. At 90 million years before the present New Caledonia, as part of the Norfolk Ridge, was juxtaposed to the Lord Howe Rise which in turn was in contact with the East coast of Australia. Separation of New Caledonia

[^0]

Fig. 1. - All rccords of Acanthodrilus, Eudiplotrema and Diporochaeta for New Caledonia (Black circles). Open circles are sites which yielded earthworms in other genera only:
from these masses by rifting is dated shortly after 80 million years ago (Griffiris, 1971 ; Giefffitis and Varne, 1972: Griffitus, 1974). Separation of Australia from Antarctica occurred later, being dated by these workers et 50 million years ago, or 43 million years
ago in the estimate of Jabdine and McKenzie (1973). The lama and llora of New Caledonia may thus be deduced to be partly relictual from that ol Cretaceous Australia and ultimately ol' Gondwanaland. 'The earthworn fama, listed by Michaelsen (1913), eonsists of Megascolecidae assigned to the gencra Acanthodrilus, Plutellus, Pontodrilus, Megascolex, Pheretima and Dichogaster; Ocnerodrilidae, represented by a species of Eukerria; Eudrilidae; Glossoscolecidae and Lumbricidac. Of these, only Acanthodrilus, Plutellus and possibly the single species of Megascolex are cudemic, the others being widely distributed, peregrine forms.

The relevance of the relictual endemic fanna to Australian studies, morphological similarity of Acanthodrilus to the Australian Diplotrema and the phylogenetically very significant position of the New Caledonian plutelli, prompted the authors to collect in New Calcdonia in Fehruary 1977.

IIS'TORIC

Acanthodrilus

The conlused taxonomic history of Acanthodrilus leading to the modern eoncept of this genus is discussed by Pickford (1937) and Jamieson and Dyne (1976) and only a bricl summary is necessary here. Acanthodrilus was crected by Perrier (1872) for three species first described in the same work, A. obtusus and A. ungulatus, from New Caledonia, and A. serticillatus, from Madagascar. A. serticillatus was sulsequently transferred to the glossoscolecid genus Kynotus (Micnaelsen, 1897). A. obtusus was transferred to the Acanthodriline genus Notiodrilus by Michaeleex, 1899, Notiodrilus being distinguished from Acanihodrilus by lree testes and fumels and from Microscolex by retention ol both pairs of prostatcs, only the anterior pair being retained in Microscolex. Acanthodrilus was thereby restricted to the single spceies A. ungulatus. A. layardi Beddard, 1886, was regarded as a junior synonym of A. ungulatus hut was later reinstated as a distinct species (Micilaelsen, 1913).

Notiodrilus was later suppressed in Microscolex on demonstration of variation in choscly related species from the acanthodrilin condition seen in Notiodrilus to the microseolecin condition previously diagnostic of Microscolex (Michaelsen, 1905). Prckford (1932) eonfirmed this decision, noting that this variation also oceurred intraspecifically. However, 011 erection of Eodrilus (Michaelsen, 1907), Microscolex was retained only for species in which the gizzard was reduced or absent, while the large residue was assigned to Eodrilus. The type-specics of Notiodrilus (N. georgianus) remained in Microscolex.

Acanthodrilus remaincd monotypic in Das Tierrcich (Michaelsen, 1900) but Michaelsen (1913) added 16 New Caledonian and Loyalty Island species and merged Eodrilus with it on the grounds that in many of the new species the testis-sacs were in a very incomplete state of development and that generic significance could therefore no longer be attached to the prescnce or absence of thesc sacs. He noted also that the New Calcdonian specics of Acunthodrilus had well developed nephridial vesicles, a character which he had previously considered to be peculiar to Microscolex. Demonstration by Jamieson (1971a)
that Diplotrema Spencer, 1900, has acanthodrilin male pores neeessitated placing the type speeies of Eodrilus, E. cornigravei Miehaelsen, 1907, and some other Australian speeies of Eodrilus, in Diplotrema. The eongeneric position of the two type speeies was emphasized by mutual possession of modified, genital setae in the vieinity of the spermatheeal pores. Pıcкғовd (1932) had reinstated Eodrilus for aeanthodrilin worms laeking nephridial vesieles white Microscolex and Acanthodrilus were eharacterized by these struetures. In Acanthodrilus they were widened J-shaped tubes, while in Microscolex they were ovoid or pear-shapert.

The residue of Eodrilus, not assignable to Diplotrema and laeking the J-shaped vesicles of Acanthodrilus, was placed by Jamieson (1971b) in Notiodrilus. Reexamination (Jamieson, 1974b) of the type-species of Notiodrilus, Acanthodrilus georgianus Michaelsen, 1888, indicated that, notwithstanding the variation from aeanthodrilin to mieroseoleein terminalia noted by Micinelsen and Pickford in other speeies, this speeies differed suflieiontly from the type-speeies of Microscolex to justify retention of Notiodrilus though only as a subgenus of Microscolex. Diplotrema was included in Microscolex as a third subgenns. The sulgenus Microscolex ineluded only three (mieroseoleein) speeies, all with nephridial bladders; Notiodrilus was a large, heterogeneous group, containing vesiculate and avesieulate species, while the sole unique feature of five species assigned to the avesiculate subgemus Diplotrema was the invariable presence of spermathecal genital setae. Jamieson and Dine (1976) added new species to the Cormerly monotypie Diplotrema which alsorbed all Australian Notiodrilus speeies and beeane polythetie in containing forms with or without spermatheeal genital setae. Attention was drawn to the need for resolution of the problem posed by the residue of Notiodrilus.

The presence in Acanthodrilus of spermatheeal genital setae whieh are often indistinguishable from those of Diplotrema underlines the desirability of eomparison with Diplotrema. The two entities are undoubtedly elosely related, and, as a whole, Acanthodrilus is distinguished only by presence of nephridial vesieles. Similar setae oeeur in the digastric North American genus Diplocardia which Jamieson and Dyne (1976) maintain is also elosely related to Diplotrema, despite assertions of Gates (1977) to the contrary.

Acanthodrilus takes priority over Microscolex, Notiodrilus and Diplotrema respectively and, as Diplotrema appears morphologieally and phylogenetieally eloser to it than to Microscolex, it might be argued that these four entities, and even Diplocardia, should be grouped as subgenera in the genus Acanthodrilus. The four groups represent geographieally distinet portions of a Gondwanan acanthodrile fauna and Diplocardia may indieate a Mesozoie incursion into Laurasia. Until Notiodrilus and other acanthodriline genera sueh as Yagansia are revised, their status must remain uneertain. The present study is directed to providing a thorough eharacterization of Acanthodrilus whieh in eonjunetion with the revision of Diplotrema by Jamieson and Dyne (1976) and of Diplocardia by Gates (1977) will lay a firmer foundation for future revisionary studies on the Aeanthodrilinae.

New Caledonian Plutelli

With the exeeption of the single species of Pontodrilus, Mighaelsen (1913) placed the New Caledonian plutelloid worms (those with holonephridia, eight setae per segment and
tubular prostates) in the genus Plutellus. One was referred to the subgenus Plutellus and the remaining six to the subgenus Diplotrema. Michaelsen placed the hitherto monotypic Australian Diplotrema in Plutellus because he had demonstrated in the New Caledonian specimens that the male pores opencd separately from the prostate pores on XVIII, a condition described by Spencer (1900) for the type-species of Diplotrema, D. fragilis. This condition prompted Stephenson (1930) to regard Diplotrema as the ancestral genus of the Megascolecinae, the normal mcgascolecin condition in which male and prostate pores are combined, being derivable from it. It has been shown, however, (Jameson, 1971b) that the type-specics of Diplotrema was incorrectly described by Spencer and that its male terminalia showed the acanthodrilin arrangement, male pores on XVIII and two pairs of prostate pores, on XVII and XIX. As statcd by Jamieson and Dyne (1976), this condition, with the holonephric condition of the excretory system, necessitated placing this species, and therefore its genus, in the subfamily Acanthodrilinae. It was pointed out that if Michaelsen's observation of discrete male and prostatic pores in the five New Caledonian species were correct this would appear to warrant crection of a new plutelloid genus. They cannot be accommodated in Plutellus as restricted by Jamieson (1971c). It will be seen below that the name Eudiplotrema is proposed to receive these species. The single New Caledonian plutelloid with fused male and prostatic pores, P. pygmaeus, can be accommodated neither in Eudiplotrema nor Plutellus and its affinities will be considered in the Discussion. The Eudiplotrema condition of the male terminalia remains the most primitive in the Megascolecinae. Its restriction to New Caledonia seems compatible with the view of this island as a refuge of early Gondwanan forms.

Descriptive format and abbireviations

The characters employed and their sequence in the generic and spccific descriptions conform with the senior author's previous works.

Abbreviations in the illustrations are : b.v., blood vessel ; bl, bladder ; cae, caecum of intestine ; d.b.v., dorsal blood vessel ; ㅇ, female pore; g.m, accessory genital marking ; g.s, genital seta; gl.m.st, glandular and muscular stroma; l.ep, lining epithelium; ta, male pore; nk, neck; np, nephropore ; ns, nephrostome; pr.d, prostate duct ; pr.g, glandular part of prostate; pr.p, prostate pore ; pr.po, prostate porophore; ps.f, penisetal follicle ; s.tum, setal tumescence ; sem.ch, seminal chamber ; sem. gr, seminal groove ; sp.amp, spermathecal ampulla; sp.div, spermathecal diverticulum ; sp.p, spermathecal pore; tu, tuft of nephridium.

In the text, abbreviations for specimens are : H, holotype; P, paratype; S, specimen ; registration numbers for institutions commence with AH, National Museum of Natural History, Paris; BJ, Jamieson Collection ; BMNH, British Museum (Natural History) ; QM, Queensland Museum. All specimens were collected by B.G.M. Jamieson and J. D. Bennett.

SYSTEMATIC DESCRIPTIONS

Genus ACANTHODRILUS Perrier, 1872

Acanthodrilus (part.) ; Perrier, 1872 : 85 (excluding A. verticillatus).
Acanthodrilus (part.); Michaelsen, 1899:237;1900:127;1913:188; Stephenson, $1930: 824$. Notiodrilus (part.); Michaelsen, $1899: 239 ; 1900: 128$.

Eodrilus (part.); Michaelsen, 1907 : 141.
Acanthodrilus; Pickford, 1937:589; Lee, 1959 : 37.
Diagnosis : (Setae lumbricinae. Dorsal pores present). Prostatc pores 2 pairs in XVII and XIX with male pores in XVIIL or all pores transposed $1-3$ segments posteriorly. Ilolonephric; nephridia with elongate, caudally usually J-shaped, bladders. Prostates tubular (extending through several segments). Spermatheeae 2 pairs (diverticulum usually with multiple sperm ehambers; usually with genital setae in their vicinity).

Description

Prostomium tanylobous or exceptionally (yateensis) epilobous. With or without parietal pigmentation. Perforate dorsal pores commeneing in 11/12-13/14 or behind the clitellum. Ventral setal eouples in the vicinity of the spermathecal pores frequently enlarged and sculptured as genital setae and on glandular protuberances; those at the prostate pores modified as penial setae. Somatic setae in 8 regular longitudinal rows throughout ; very closely paircd, the dorsolateral pair (cd) slightly wider to narrower than the ventrolateral pair $(a b)$. Nephropores commeneing near the anterior extremity, in a single, straight series on eaeh side in $c d$ but when present at the anterior limit of II well dorsal to d (exeepting kermadecensis). Clitellum annular, except where interrupted by the male genital field, exeeptionally (kermadecensis) saddle-shaped; ineluding the segment of the lemale pores. Prostate pores 2 pairs, in XVII and XIX; male porcs ncar the equator of XVIII ; or all pores displaced $1-3$ segments further posteriorly ; seminal grooves (always ?) present, plaeing the male pores in communication with the prostate pores. Fcmale pores, a minute pair in XIV, anterior to the setal are. Spcrmatheeal pores 2 pairs, at the anterior margins of VIII and IX, in ab lines. Accessory genital markings frequently prescnt; eyelike or transverse pads.

Dorsal blood vessel single, rarcly in places segmentally doubled, continuous onto the pharynx. Last hearts in XIII ; those in X-XIII latero-oesophagcal, each recciving a connective from the dorsal vessel and one from the supra-oesophageal vessel ; preeeded by dorsoventral eommissurals. A pair of latero-oesophageal vessels, median to the hearts; extending far anteriorly. Supra-oesophageal vessel oesophagcal only. Subneural vessel absent. Gizzard single, strongly muscular, anterior to septum $7 / 8$ or $8 / 9$, usually in VI, never wholly in V. Oesophagus lacking extramural calciferous glands. Intestinc (always ?) commencing in or behind XVII ; dorsal typhlosole unilaminar, bilaminar or absent ; muscular thiekening absent ; a pair of short intestinal caeea rarely present (in XXVI). Nephridia : vesieulate holonephridia; antcrior pairs tufted (excepting kermadecensis), with straight, hooked, tortuous or V-shaped bladderlike ducts; those in intestinal segments simple, bladder V-shaped or, usually, with the ectal limb shorter than the ental, (i.e. J-shaped) but sometimes passing straight laterally and slightly divertieulate lateral to the pore; intestinal (and more antcrior ?) nephridia each with prescptal funnel. Testes in X and XI, free or in testissaes; seminal vesicles in IX and XII, less commonly in XI and XII, rarely otherwise disposed. Prostates 2 pairs; tubular, though often depressed. Penial setae (always?) present, assceiated with the prostate pores. Ovaries, in XIII, fan-shaped, with several
egg strings ; ovisaes present or absent. Spermatheeae 2 pairs, in VIlI and IX, divertieulum sessile, simple, bi-or multilobed, usually with numerous sperm ehambers in its walls, exeeptionally (kermadecensis) elavate.

Type-species : Acanthodrilus ungulatus Perrier, 1872.

Distribution : New Caledonia and the Loyalty Islands. One speeies, questionably congenerie, on Raoul (Sunday) Island in the Kermadee group.

List of species

New Caledonia

1. A. canalanus Micharlsen, 1913
2. A. capaticus Michaelsen, 1913
3. A. chabaudi sp. nov.
4. A. chevalieri sp. nov.
5. A. coneensis Michaelsen, 1913
(i. A. fabresi sp. nov.
6. A. foanus Michaelsen, 1913
7. A. humboldti Michaelsen, 1913
8. A. ignambii Miehaelsen, 1913
9. A. Roghis sp. nov.
10. A. lacuum Michaclsen, 1913
11. A. layardi Beddard, 1886
12. A. longicystis sp . nov.
13. A. nutalicius Miehaelsen, 1913
14. A. oubatcheanus Michaelsen, 1913
15. A. obtusus Perrier, 1872
16. A. paniensis Michaelsen, 1913
17. A. paripapillatus sp. nov.
18. A. perrieri Miehaelsen, 1913
19. A. rouxi Michaelsen, 1913
20. A. ruber sp. nov.
21. A. sarasini Michaelsen, 1913
22. A. silpester Michaelsen, 1913
23. A. ungulatus Perrier, 1872
24. A. yateensis Michaelsen, 1913

Loyalty Islands (Mare)

26. A. mareensis Michaelsen, 1913

Kermadec Islands (Raoul Island)
27. A. kermadecensis Lee, 1953

Acanthodrilus cavaticus Miehaelsen, 1913
(Fig. 1, 6A, 7A, 8A, B, 9A, G; Pl. IV, 30-35)
Acanthodrilus caraticus Miehaelsen, 1913 : 215-217, Pl. VII, fig. 23-26.
Length $46-60 \mathrm{~mm}$ (mean of $5=51.4 \mathrm{~mm}$; speeimens 4 and 8 are posterior amputees), width (XV) 3.7 (S8), range $2.8-3.7 \mathrm{~mm}$ (mean of $7=3.5 \mathrm{~mm}$), segments $126-140$ (mean of $5=136$). Form moderately stout, approximately eireular in eross seetion with tendency to dorsoventral depression ; a narrow dorsal groove (eanalicula) in the posterior segments
leads to the anus whieh forms a vertieal terminal eleft at the pointed posterior cnd. 'Traces of reddish dorsal pigmentation present in alcohol. Peristomium rudimentary, reduced to about one fourth the length of most segments of the forebody ; prostomium indieated by a pair of parallel elcfts separated by about one third the width of the peristomium; tanylobous. First dorsal pore $12 / 13$ (S3, 8). Glandular protuberanee around the ventral setal couple of VII (S2, left only), VIII (S7, left only) or IX (S4, 7, 8, right only; S1, lelt only) ; or not externally evident. Dorsal and some or all of the ventral setae present on XVIII; in XII, aa:ab:bc:cd:dd $=8.4: 1.0: 8.6: 1.1: 28.1$; dd:u $=0.49$ (mean of 7). Neplropores small but distinct, visible throughout the body from V , in cd , ncarer or in d, near the anterior borders of their segments. Clitellum annular, weakly developed, in the vieinity of XIV-XVII but limits not determinable. Prostate pores equatorial in XVII and XIX, in mid $a b$, eaeh with narrow raised lips which constitute a small porophore; an elliptical area around eaeh porophore somewhat clevated ; broad scminal grooves with sharply demareated median margins forming parentheses, the greater length almost straight at about $1.5 a b$ lateral of b. Prostate pores of XVII 0.9 mm (S8), 0.09 body cireunferenee, apart. The mate field depressed (insunk) between the seminal grooves (S4, 5, 7, 8; male field weakly developed in S $5-3,6$). Female pores distinetly visible, eaeh minute but with narrow, whitish lips, immediately anterior to the setal are in $a b$ of XIV (SI-3, 8). Spermathceal pores 2 pairs, at the anterior margins of VIII and IX, small slits with firm white lips, in b lines, preceded by a corresponding embayment of the anterior segment (ST-3, 8) ; the posterior pair $2.12 \mathrm{~mm}, 0.25$ body circumference, apart (S8). Aeeessory genital markings in the form of whitish approximately equatorial, eireular to elliptical glaudular pads : a hemispheroidal pair in XI including setae a in their lateral borders (S2, 4, 6, 7) ; a small marking in XIV, double (S8) or single (S', 7) ; one to the right of the ventral midine in XV (S8) ; one midventral in XVI (S2,8) learing in S2 a double glandular porelike marking ; one midventral in XXI (S4, 7, 8) ; or in XXII (S2, 7) bearing in $S 2$ a double pore-like marking.

Thiekest scpta 10/11-12/13, strongly thiekencd. Last hearts in XIII. Supra-ocsophageal vessel in IX (and further anteriorly ?) - XIII. A large latero-oesophageal vessel on each side, free from the ocsophagus, originating below the oesophagus in VIII and passing forward to the buceal region.

Gizzard large, subspheroidal, strongly muscular, in VI, septa 6/7 execedingly, and $7 / 8$ very thin ; preceded by a longer region of the oesophagus which, though thinner walled, is almost as wide. Oesophagus segmentally dilated, without demonstrable specialization ; ealeiferous glands alsent. Intestine eommeneing at $1 / 2$ XVII and reaching full width by XVIII; a fairly deep, thick, uniłaminar dorsal typhlosole eommeneing in XXIV but absent from posterior caudal segments ; eaeca abscnt. Nephridia : a pair of very large tufts in V hy external scgmentation sends a pair of widely tubular, tortuous, bladder-like ducts forwards to enter the body-wall anteriorly in 11 well dorsal of d. Tulting continuing hut diminishing to the posterior end of the ocsophagus; bladder in III short and straight, in IV short but entally hooked, in V to the posterior end of the oesophagus variable, slightly tortuous, sinuous or V-shaped ; in the intestinal region J-shaped insofar as the ectal limb, is much shorter than the ental limb but the eetal limb itself is loent down to the pore. Funnels not demonstrated but the nephridia have postseptal neeks. Large, irideseent, free sperm funneI in X and XI ; large racemose seminal vesicles in XI and XII. Prostates
basieally tubular but strongly flattened tangentially to the body wall ; winding irregularly, the anterior pair for $6-8$, the postcrior pair for 6 or 7 segments (S1, 8) ; each with slender moderately long sinuous duct the ental half of which is weakly, the ectal half strongly, museular ; a museular hemispheroidal swelling eorresponding with the external porophore ; the posterior prostates sometimes reduced to approximately half the width of the anterior pair. Penial setae (S1, 2, 6) slender with a curved, obtusely pointed tip ; eetally direeted teeth $3-8 \mu \mathrm{~m}$ long, singly or in groups of two to several, densely clothing the eetal region of the shaft and ventrally cxtending up to the curvature; dorsally devoid of teeth over, and shortly cntal to, the curved region; length of a mature seta (S 6) 1.82 mm , midshaft width (eetal to whieh it swells loeally) $53 \mu \mathrm{~m} . \quad a$ and b follieles strongly museular, separate eetally, uniting entally, extending through two segments and attached by a strong ligament to the body wall in the segment next posterior to these. Genital setae (examined in VII, S2, 6) moderately slender, slightly eurving (almost straight) to a sharply pointed laterally kecled tip ; the eetal $343 \mu \mathrm{~m}$, except the tapered tip, with four or more rows of deep scallops (notches) which are staggered so that those of adjacent rows are not in the same transverse line; the posterior lip of each noteh forming a smooth erescent or with one or more small tooth like projections; the arrangement breaking up into less regularly disposed pits at the cetal limit of sculpturing ; length mature seta 0.74 mm , midshaft width $32 \mu \mathrm{~m}$. Large palmate bodies smaller than lut resembling seminal vesieles, in XIII and XIV may be the ovaries and ovisaes respectively. Spermatheeae 2 pairs discharging auteriorly iu VlII and IX, the ampulla often defleeted into the preceding segment excepting the ectal end of the duct ; each with wide, entally narrowing ovoid ampulla and stout well demareated cylindrieal duct; a large, bilobed, cushion-like divertieulum sessile dorsally at junetion of ampulla and duct, with numerous small sperm masses visible through its walls; seetions through the spermatheca (S7) reveal numerous ovoidal sperm ehambers decply embedded in the thick, irregular epithelium which lines, and mueh constricts, the lumen of the divertieula; the antcrior spermatheeae sometimes appreeiably reduced; length right spermatheca of IX $1.92 \mathrm{~mm}(\mathrm{H})$; ratio total length : length duet 2.42 ; ratio length : length diverticulum 3.29 .

Material examined : $165^{\circ} 27^{\prime}$ E. $21^{\circ} 24^{\prime}$ S. Col des Roussettes, in clay soil on a bank in rainforest, near road, 15 Feb. 1977 - specimens (S) 1,2 and 8 (AH 577-579), specimens 3, 6 and 7 (BJ 1977. 9.2, 3, 8), specimen 4 (QMG 8888), spccimen 5 (BMNH 1978.1.7).

Remarks: The type-locality of A. casaticus is the grotto of Ouaouć near Bourail. The new material, from Col des Roussettes, agrees in important respects, notably the bilobed spermathecal diverticula, the densely crowded minutc teeth on the penial setae (the form of these setae eorresponding suffieiently for identifieation), the general form of the genital setae (though scalloping of these is more frequent in the seta illustrated by Michaelsen) and the midventral genital marking in XXI. Diffcrences in the aecessory genital field are within the range aceeptable as intraspecifie variation.

Acanthodrilus chabaudi sp. nov. ${ }^{1}$
(Fig. 1, 2A, 7B, C, D, 8C, D ; Pl. II 16-18, 19, 20)
Length $50-58 \mathrm{~mm}(\mathrm{P} 1,2)$; width (midclitellar) $3.1 \mathrm{~mm}(\mathrm{H})$, range $2.5-3.6 \mathrm{~mm}$ (mean of $5=3.0 \mathrm{~mm}$). Segments $154-165(\mathrm{P} 1,2)$. Form moderately slender, circular tending to depressed in cross section. Pigmentless excepting the yellowish clitcllum in alcohol. Tanylobous, dorsal tongue narrowing posteriorly, with a transverse furrow behind its midlength. First dorsal porc 11/12. Epidermal modification around genital setae not recognizable (H, P3) or slight at ab of VIII and IX (P1, 2, 4). All setac present in XVIII; in XII, aa:ab:bc:cd:dd=9.0:1.0:9.2:1.1:27.2;dd:u=0.46(nean of 5). Nephropores small, visible behind the elitellum in $c d$. Clitellum annular, narrower than adjaeent regions though well developed, in XIV-XVII but least developed in XVII in which it is possibly interrupted between the seminal grooves. Prostate pores in b lines of XVII and XIX on small but distinct elliptical papillae; male pores minute, almost as far forward as midway between the setal are and anterior border of XVIII, lateral of b a distance equal to $a b$; scminal grooves indistinet, laterally convex parentheses, bounded laterally by a thiek tumid band, this band continuing to the anterior margin of XVII and posterior margin of XX so as to elcarly circumseribe the malc field. Prostate pores of XVII (H) $1.39 \mathrm{~mm}, 0.17$ body circumference, apart. Female pores minute, shortly antcrior to setae a of XIV. Spermathecal pores in $a b$, ncarer b, at the anterior borders of VIII and IX, on small papillac ; the posterior pair (H) 1.75-1.88 mm (H, P1-3), 0.19-0.2 body eircumference, apart. Aecessory genital markings : a pair of approximately elliptical pads with a transverse line of cicatricing in $a b$ in each of intersegments $17 / 18,18 / 19$ and $19 / 20$ (II, P1-4) and also in 16/17 (P1, 3). Midventral tumescence equatorially in some or all of XVII-XX : an elliptieal pad with paired pore-like markings in XVII (H, P3), a similar somewhat more extensive marking in XVIII (P3), and thin cicatriced ridges in XIX (H, P3) and XX (P3) ; or midventral markings absent (P 4).

Thickest septa $9 / 10-12 / 13$, fairly strongly thickened. Last hearts in XIII. Commissural vessels in VII-IX dorsoventral, only, though still valvular, and eaeh giving a branch to the body wall. Supra-ocsophageal vessel traceable in VIII-1/2 XIV. A large laterooesophageal vessel on each side free from the oesophagus seen in VIII and IX.

Gizzard relatively very large, narrowly eylindroid, very strongly muscular, in VI; septum 6/7 delicatc and funnel-shaped but not adherent to it. Oesophagus virtually suppressed in VII by baekward extension of the gizzard ; segmentally somewhat dilated in VIII and IX ; in XI-XIII strongly pouehed laterally and darkly vaseularized, and less so in X and XIV, but extramural ealciferous glands absent ; narrow and not espeeially vascular in XV-XVII (H, P2). Intestinc commeneing in $1 / 2$ XVII but not reaching full width until XXII. DorsaI typlosole commencing in XXIII; consisting of two laminae with frce margins direeted ventrolaterally so that its form is λ-shaped with negligible vertieal limb but absent from posterior eaudal segments; eacea absent. Nephridia: the most

[^1]

Fig. 2. - Genital fields. A, Acunthodrilus chabaudi, holotype, All $580 ;$ B, A. cheralieri, holotype, All 582.
anterior is a pair of very large compact tufts with a wide, anterolaterally directed straight, broadly tubular bladder-like duct which discharges at the anterior margin of III near the middorsum. Tufts decrease in size posteriorly but the duet of the nephridium discharging anteriorly in IV is already an elongate bladder with $>$-shaped lateral bend, discharging anterior to cd . Tufting continucs to IX; at least some of the tufts display a postseptal neck and probably each, therefore, has a preseptal lunnel. Very slender necks are visible on nephridia of the intestinal region but funnels are not denonstrable and are presumably unusually small. By the intestinal region the bladder is J-shaped insofar as the ectal limb is shorter than the ental limb lout the ectal limb is itself bent down prior to entering thic body wall (H, P2). Caudally bladders each an elongate somewhat tortuous wide tube passing laterally as far as the pore over which it dilates slightly before narrowing to the body wall (P2). Iridescent free sperm funnels in X and XI ; moderately large racemose seminal vesicles in IX and XII. Prostates slenderly tubular, very strongly and compactly convoluted, the loops closely contiguous and deformed in cross section by mutual contact ; each with long slender strongly muscular duct which does not widen ectally and is mostly concealed hy the corresponding a and b penisetal follicles; glands of XVII extending into XVHII or XIX, those of XIX into XXI ; approximately equal in size (H, P2). Penial setac (P2) slender, slightly curved, the ectal tip hollowed out or spatulate ; cetally with a moderately dense scattering of short (approx. 3-4 $\mu \mathrm{m}$ long) ectally directed groups of 2-4, sometimes more, pointed spines; entally spines forming incompletely encircling serrated bands with each spine entally continuous to the next hand as a ridge, giving a corrugated appearance ; length mature seta 2.1 mm , midshaft width $31 \mu \mathrm{~m}$. Genital sctac (examined in IX, P2) stout, gently curving to a moderately pointed unsculptured tip ; cctally in profile with some cight diagonal rows of three or four shallow scallops, the posterior lip of each scallop jagged with some indistinct teeth; the rows approx. $10 \mu \mathrm{~m}$ apart; length mature scta 0.72 mm ; midshaft width $21 \mu \mathrm{~m}$. Ovaries, tufts of numerous strings of moderately large oocytes, and funnels in XIII ; ovisacs absent. Spermathecae 2 uniform pairs, discharging anteriorly in VIII and IX though all but the ectal end of the duct is reflected into the preceding segment on the right side (H) or both sides (P2) ; each with ovoid, entally narrowed, ampulla and well demareated stout duct ; a large cushion-like diverticulum sessile dorsally at junction of ampulla and duct with iridescent sperm masses visible at its ental margins. Length left spermatheca of VIII 1.6 mm , ratio of total length : length duct 2.3 ; ratio length: length diverticulum 3.2.

Material examined : $166^{\circ} 45^{\prime}$ E. $22^{\circ} 07^{\prime}$ S. Rivière Bleue, in clay soil under a giant Kaori tree (Agathis) in rainforest, 17 Feb. 1977 - holotype, paratype 2 (AH 580, 581), paratype 1 (QMG 8889), paratype 3 (BMNH 1978.1.8), paratype 4 (BJ 1977.9.4).

Remarks: A. chabaudi differs from all other species of Acanthodrilus in the form and ornamentation of the penial setae. Of the species described in this paper, A. paripapillatus and A. ruber agree with it in origin of the typhlosole in XXIII and in its bilaminar form, but these differ from it in the more posterior origin of the intestine and in other respects.

> Acanthodrilus chevalieri sp. nov. ${ }^{1}$
> (Fig. 1, 2B, 8E, F, 9D ; PI. V, 41-45)

Length > 36, 44, 29 mm , width 2.3-2.8 mm, segıents? (H, P1, 2, posterior amputees). Form slender, approximately circular in eross seetion though tending to be flattened ventrally, notably at the male field. Traees ol' reddish dorsal pigmentation in aleohol. Prostomium tanylobous, about $1 / 3$ the width of the peristomium but dorsal tongue narrowing slightly posteriad, distinctly demarcated. First dorsal pore 12/13 (H, P2). Glandular modifieation indicative of genital setae visible only in the holotype as two pore-like markings in the vieinity of the left $a b$ locus of IX. All setae present on XVIII; in XII, $a a: a b: b c$: $c d: d d=5.5: 1.0: 6.7: 0.9: 19.5 ; d d: u=0.46$ (mean of 3). Nephropores visible throughout from III, small pores in $c d$ at the anterior margins of their segments; a pair of minute marks anteriorly in II shortly below the prostomium, well dorsal of d lines are probably the nephropores. Clitellum aunular, well developed and posteriorly slightly wider than adjaeent segments, $1 / 2$ XIII-XVll but interrupted by the male field in XVII and, as a postsetal embayment, in XVI ; intersegmental furrows, nephropores and dorsal pores visible though somewhat obseured. Prostate pores in b lines (relative to adjacent segments) of XVII and XIX, eaeh indieated by a protruding perial seta in a transverse slit or depression ; porophores absent; seminal grooves narrow but distinct, almost straight but deflected medially at interscgments $17 / 18$ and $18 / 19$, lateral of b by less than the width of a setal eouple exeept at the prostate pores which they join by eurving medially : prostate pores of XVII 0.92 mm (H, P1), 0.17-0.18 body circumference, apart. Femalc pores shortly anterior to setac a of XIV (3 speeimens). Spermathecal pores in $7 / 8$ and $8 / 9$, each with creseentic anterior lip, immediately lateral of $b(3$ specimens) ; the posterior pair 1.1-1.4 mm (11, P1), 0.22 body circumferenee, apart. Accessory genital markings not developed.

Thiekest septa $11 / 12$ and $12 / 13$, fairly strongly thickened. Last hearts in XIIl; eommissurals in IX (and further anteriorly ?) dorsoventral only, though valvular, and, unlike the hearts, eaeh giving a braneh to the body wall. Supra-oesophageal vessel traeeable in X (and anteriorly ?) - XVIII, weak in X-XIII ; well developed in XIV-XVIII. A large latero-oesophageal vessel on eaeh side, free from the oesophagus, originating beneath the latter in IX and passing forward to the buccal region, giving branches to the body wall in front of the spermathecal region.

Gizzard large, ellipsoidal, almost cylindroid, strongly museular, anterior to the very delicate septum $8 / 9$ but segmental location not determinable as septa $6 / 7$ and $7 / 8$ are not eertainly demonstrable ; posterior end of gizzard in XI relative to external segmentation ; unmodified oesophagus anterior to the gizzard approaching the latter in length and suggesting posterior displacement of the gizzard (into VIII). Oesophagus segmentally dilated and darkly vaseularized in XII, XIII-XVI, narrow in XVII to $1 / 2$ XIX. Intestine commencing at $1 / 2$ XIX but not reaching full width until XXII or XXIII (H, P1), a large dorsal typhlosole which consists of a single straight or slightly tortuous vertical lamina, commeneing in XXIV (H), XXV (P1) ; muscular thickening and caeca absent. Nephridia :

1. Named for Mr. L. Chevalier, Conservateur du Musée Néo-Calédonien, Directeur du Centre Lapidaire, whose helpful advice led to our visiting Rivière Bleue.
large paired tults discharge by straight, anterolaterally directed, tubular hladder-like ducts antcriorly in II (dorsal to d ?) and in III-IV (in ed lines) ; tufts discharging anteriorly in V-IX in cd have long V-shaped bladders, the median limb of which in segment V is ouly about one third of the length of the lateral limb, and becomes progressively shorter in VI-IX ; the latter condition persisting in the posterior ocsophageal region in which some tufting persists ; a preseptal funnel demonstrated in postcardiac ocsophageal and intestinal regions but nephrostomes possibly present in the anterior segments. In intestinal segments nephridia are simple and the bladders are sharply bent, with the ectal limbshorter than the ental limb but not so short as to give a J-shaped appearance, i.e. they are intermediate between V-shaped and J -shaped vesicles. Large, iridescent, free sperm fumels in X and X 1 ; large racemose seminal vesicles in XI and XII. Prostates tubular, zig-zagged with adjacent bends closely contiguous and deformed in cross section by contact ; each gland significantly depressed tangentially to the body wall and consequently almost leaf-like ; those of XVII extending into anterior XX (H) or XIX (P1) ; those of XIX into XXI; each gland with moderately stout, muscular duct which is slightly sinuous but not tortuous and expands very slightly at the pore. Penial setae: a and b follicles separate though contiguous, not concealing the prostate glands nor all hut the median part of the ducts ; those of XVII extending into XIX, those of XIX into XX (II) or XXI (P1) (ignoring a terminal tendon-like cxtension). Penial setae (P1) slender with a curved obtusely pointed to blunt tip ; irregularly alternating bands of ectally directed bract-like teeth, approximately $5 \mu \mathrm{~m}$ long, occur on the ectal tenth, excepting the extreme tip, and further entally join to form irregular serrated bands partly or wholly encircling the shaft at approximately $18 \mu \mathrm{~m}$ intervals ; a shallow ventral gutter extending entally from the tip ; length of a mature seta 1.53 mm ; midshaft width $34 \mu \mathrm{~m}$. Ovarics, tufts of several conjoined strings of large oocytes, and fummels in XIII ; ovisacs possibly represented by small (enpty) sacs on each side in XIV well above the location of the corresponding funnels ; such sacs not present in other segments. Spermathceae 2 pairs discharging anteriorly in VIII and IX, caeh with a rounded ovoid ampulla and stout downwardly directed dnet at right angles to it; a cushion-like diverticulnm sessile dorsally at junction of ampulla and duct with sperm masses visible through its walls. Length right spermatheca of IX 1.67 mm : ratio total length : length duct 1.9 ; ratio length : length diverticulum 4.0.

Material examined : $166^{\circ} 45^{\prime}$ E. $22^{\circ} 07^{\prime}$ S. Rivière Bleue, in clay soil under a giant Kaori tree (Agathis) in rainforest, 17 Feb .1977 - holotype (AH 582), paratype 1 (BMNH 1978.1.9), paratype 2 (BJ 1977.9.5).

Remanks : A. chesalieri resembles only A. koghis in the palisadc-like arrangement of long blunt spines partly encircling the penial setac, and, in some setae, in the terminal dimpling of the tip. It further resembles that species in the relatively uncominon location of seminal vesicles in XI and XII. Noteworthy differences from A. koghis are the much smaller body length, the (constant?) absence of accessory genital markings and the presence of a typhlosole. A. chabaudi, also from Rivière Bleue, has similar but less circumferentially extensive spination of the penial setae but differs in having a bilaminar, not unilaminar typhlosole, origin of the intestinc in $1 / 2$ XVII, seminal vesicles in XI and XII and in other respects.

Acanthodrilus fabresi sp. nov. ${ }^{1}$
(Fig. 1, 3B, 8G, H, 9B; Pl. II, 13-15)

Length 45 mm , width (XV) 1.9 mm , segments 138 . Form moderately slender, cireular in cross seetion ; posterior end somewhat elubbed. Pigmentless in aleohol. Tanylobous, dorsal tongue hroad and parallel-sided, with faint transverse furrow at midlengtl. First dorsal pore $11 / 12$. Setae $a b$ of VIIl on slight glandular prominenees. All setae present on XVlII; in XlI, aa:ab:be:cd:dd $=$ 4.0:1.0:6.9:1.1:17.7; $d d: u=0.47$. Nephropores visible in the forebody as ineonspicuous orifices anteriorly in their segments in cd lines but nearer c, behind the elitellum nearer d, but apparently repressented in II by a minute mark shortly behind the lateral limit of the prostomium, well dorsal to d. Clitellum not developed. Prostate pores in $a b$ slightly median of a lines, approximately equatorial, in XVIl and XIX. eaeh on an ineonspieuous, minute papilla (speeimen ineompletely mature but, as inseminated, post-sexual) ; seminal grooves broad parenthetie traets with narrow groove bounding the median edge of eaeh, very strongly eonvex laterally. Prostate pores of XVII 0.67 mm (H), 0.1 body eireumferenee, apart. Male pores on minute papillae, in the seminal traets equatorially in XVIIl almost $2 a b$ lateral of b. Female pores minute, shortly anteromedian of setae a of XIV. Spermatheeal pores on small but distinet papillae in $a b$ of $7 / 8$ and $8 / 9$, projeeting into the anterior segment ; the posterior pair $0.87 \mathrm{~mm}, 0.15$ body eireumferenee, apart. Aeeessory genital markings not developed.

Thiekest septa $9 / 10-11 / 12$, strongly thiekened. Last hearts in XIII ; eommissural vessels in VIl-IX dorsoventral only, though still valvular, and eaeh giving a braneh to the body wall. Supra-oesophageal vessel traceable in VIIl-XVI, weakly developed. A large latero-oesophageal vessel on each side free from the oesophagus running from its eonneetion beneath the oesophagus in VI through anterior segments.

Gizzard moderately large, globose, strongly museular, in VI, preeeded by a wider and equally long portion of unmodified oesophagus; septum $6 / 7$ funnel-shaped but not adherent to it. Oesophagus virtually suppressed in VII; segmentally dilated and with eireumferential vaseular striae in VIII-XV: less so in XVI; narrow and not espeeially vaseular in XVII-1/2 XIX; ealeiferous glands absent. Intestine eommeneing in 1/2 XIX but not reaching full width until XXIII; a well-developed dorsal typhlosole beginning gradually in XXI, single for a few segments and thereafter eonsisting of 2 parallel eontiguous, thiek, vertieal laminae ; eacea absent. Nephridia : a pair of large tufts in V send a tortuous tubular bladder-like duet on eaeh side anterolaterally to diseharge anteriorly (in 1II), the bladder being preeeded in II by a smallerbladder diseharging well dorsally of d whieh appears to belong to a smaller pair of tults ; nephridia still slightly tufted in VIII with tortuous, tubular bladder. By XIl the bladder is wide and V-shaped with longer eetal liml, but in XIII and XIV the limbs are approximately equal. In the intestinal region the bladders are wide, almost straight, passing laterally as far as the pore, are eomposed of 2 irregular dilatations or are less distinetly, or not, subdivided, and turn down to the pore with or without a very small divertieulum-like projeetion laterally; i.e. hladders are not J-shaped. Preseptal funnels

1. Named for Dr. Gérard Fabres of ORSTOM, Noumea, who greatly facilitated collecting in New Caledonia.

Fig. 3. - GenitaI fields. A, Acanthodrilus paripapillatus, holotype, AII 587; B, A. fabresi, holotype, A II 583.
demonstrated for intestinal nephridia. Large iridescent sperm funnels in X and XI ; sperm masses apparently united beneath the gut in a delieate membrane whieh is continuous with the funnels, in each segment; small raeemose seminal vesicles in IX and XII. Prostates moderately long, slenderly tubular, convoluted ; approximately uniform ; adpressed loops not greatly deformed by contact ; those of XVII extending into XXI, those of XIX into XXII; each with fairly long tortuous museular duet which ectally widens slightly ;
duet (but not the gland) almost eoneealed by two entally eonjoined approximately equal penisetal follieles; the follieles of XVII and XIX cxtending into XVIII and XX respectively, each with a ligament to the body wall. Penial seta (H) slightly sinuous cetally the tip hollowed out or grooved and strongly spatulate with strongly rolled, roughly paralle sides; the groove open at the blunt eetal extremity, and with ineomplete encircling scra tions at approx. $5 \mu \mathrm{~m}$ intervals; further entally serrations breaking up into individual ectally direeted sharply pointed teeth ($2.5 \mu \mathrm{~m}$ long) whieh densely elothe the shaft. Ornamentation on the shaft ceases $200 \mu \mathrm{~m}$ from the tip, leaving the shaft lurther entally devoid of teeth. Length mature seta 1.1 mm , midshaft width $18 \mu \mathrm{~m}$. Genital sctae in VIIl only; slender, gently eurving to a pointed, unseulptured tip; the ectal $470 \mu \mathrm{~m}$ in profile with some $2-3$ rows of scallops (notehes) whieh are staggered so that those of adjacent rows are not in the same transverse line. Entally, the posterior lip of each notch forming a smooth or slightly irregular crescent ; the rows approx. $60-70 \mu \mathrm{~m}$ apart. Ectally the seallops are gradually replaeed by less regularly disposed partially eneireling serrations at $18 \mu \mathrm{n}$ intervals. Length mature seta 0.8 mm ; midshaft width $33 \mu \mathrm{~m}$. Ovaries, several strings of large oocytes, and funnels in XIII ; small sacs in XIV possibly ovisacs. Spermathceae 2 approximately uniform pairs discharging anteriorly in VIII and IX but the ampullae and much of the duct reflexed into the preeeding segment ; eaeh with ovoid-saceiform ampulla and moderately slender duct; the whole approximately retort-shaped; a wide cushion-like diverticulum sessile at junction of ampulla and duet with many irideseent spern chambers visible through its walls. Length right spermatheca of IX 1.46 mm , ratio of total length: length duct 1.75 ; ratio length : length divertieulum 3.5

Material examined : $165^{0} 27^{\prime}$ E. $21^{\circ} 24^{\prime}$ S. Col des Roussettes, in gully in dense rainforest near road, 12 Feb. 1977 - Holotype (AH 583).

Remarks : A. fabresi differs from all species of Acanthodrilus excepting A. paniensis in the inrolled form of the ectal region of the penial setae but differs from paniensis in having the more usual pointed, scalloped genital setae, in origin of the typhlosole in XXI (not XXVII) and its double lamina and $i n$ other respects.

Acanthodrilus koghis sp. nov.
(Fig. 1, 4B, 7G, 8P ; Pl. V, 36-40)
Length $255-300 \mathrm{~mm}$ (P1-3), width (midclitellar) $5.3(\mathrm{H})$ range 4.6-6.9 (mean of four $=$ 5.5 mm), segments 382,368 (P1, 3). Form slender, eircular in cross section, but veutrally llattened in the vicinity of the male genital field. Pigmentless, tanylobous, dorsal tongue broad, parallel sided. First dorsal pore 11/12 (imperforate ?), 12/13 perforate. Large paired genital seta tumescences, from which in lifc long stout genital setae were scen to conspicuously protrude, eentered on $a b$ of IX-XI (P1), XIII (H). All setae present in XVIII; in XII, $a a: a b: b c: c d: d d=9.3: 1.0: 9.2: 0.7: 24.4 ; d d: u=0.44$ (mean of 4). Nephropores small, in $c d$ throughout, excepting those anteriorly in II, whieh are well dorsal of d lines, Clitellum well developed but limits uneertain, including 1/2 XII-XVII (XVIII ?) (P1), annular but possibly interrupted ventrally in XVII between the seminal grooves. Prostate pores in

Fig. 4. - Genital fields. A, Acanthodrilus paniensis, specimen 1, All 586 ; B, A. koghis, holotype, AH 58 4.
$a b$ of XVII and XIX on small hemispheroidal porophores; male pores minute, midway between the setal arc and anterior border of XVIII, slightly lateral of b lines; seminal grooves thin and indistinct but with conspicuous margins which form slender strongly raised longitudinal bands which connect the outer edges of the prostate porophores with the male pores; these bands therefore very slightly convex laterally though indented mediad at intersegments $17 / 18$ and $18 / 19(H)$. Prostate pores of XVII (H) $2.5 \mathrm{~mm}, 0.20$ body circumference, apart. Female pores in a lines, nearer the setal are than the anterior margin of XIV. Spermathecal pores in $a b$, iu $7 / 8$ and $8 / 9$, on small papillae ; the posterior pair (II) $3.5 \mathrm{~mm}, 0.16$ body circumference, apart. Accessory genital markings : apart from the genital seta tumescences, there are 3 pairs of transversely elliptical dcpressions, of which the middle pair is medianly conjoined, in and cxtending beyond ab of $14 / 15,15 / 16$, and $16 / 17$; their surfaces with longitudinal striations or punctae indicative of orifices of glands. A pair of transversely clongate pads in 19/20, and a similar conjoined pad in 20/21, with lateral margins in b lines.

Thickest septa 10/11-13/14, very strongly thickened. Last hearts in XIIl. Conmissural vessels in VII-IX dorsoventral ouly and each giving a branch to the body wall. Supra-oesophageal vessel in V1II-XV. A large latero-oesophagcal vessel on each side free from the oesophagus but median to the dorsoventral commissurals in IX where it originates from the lateral wall of the oesophagus; continuing to the pharynx.

Gizzard very large, subspheroidal in VI; septum 6/7 very delicate and ensheathing it. Oesophagus virtually suppressed in VII and VIII by backward extension of the gizzard ; segmentally dilated in IX, and also darkly vascularised in X-XVI, narrower, and Iittle vascularised in XVII and XVIll. Intestine commencing with ahrupt expansion in XIX; caeca and typhlosole absent. Nephridia commencing in II forming a pair of large tufts with very mumerous twisted loops, the long tubilar, slightly fusiform bladder ruming anterolaterally to enter the body wall immediately behind intersegment $1 / 2$ wcll above d line; nephridia in III-IX also tufted, but smaller though still large, with slenderly fusiform bladders discharging anteriorly in their respective segnents in $c d$; at least some of them displaying a postseptal neck and probably each with a preseptal fumnel ; still strongly tufted to XVII: transitional to non-tufted in XVIII and XIX after which they are simple; large single nephrostomal funnels demonstrated in the intestinal region. Elongate irideseent free sperm funnels in X and XI ; large racemose seminal vesicles in XI and XII. Prostates slenderly tubular, and very strongly convoluted, the loops closely contiguous, and modifying the cross section of adjacent loops but not fused with them : the entire gland dorsoventrally depressed to form an irregular lobed mass; each with a slender, onee-coiled muscular duct dilating appreciably near the body wall and entering a small muscular internal swelling (bursa) corresponding with the prostatc pore; glands of XVII extending into XX; those of XIX into XXII ; the anterior pair a little if at all larger than the posterior pair : each duet overlain by a stout penisetal folliele which cntally terminates in the sueceeding segment. Double vasa deferentia traced to each male pore ; slightly but not significantly widened near the pore. Penial seta slender with a strongly curved ectal tip ; excepting the smooth apical $140 \mu \mathrm{~m}$, ectally with pointed apically directed teeth, approx. $3 \mu \mathrm{~m}$ long, forming bands at approx. 6-10 $\mu \mathrm{m}$ intervals longitudinally and apically breaking up into short staggered or alternating sections while entally tending to form complete rings ; length of mature seta 2.0 mm , midshalt width $32 \mu \mathrm{~m}$. Genital sctac (cxamined in XI and XII,

P1) moderately stout, virtually straight, tapering to a sharply pointed tip by stronger eurvature of one, the " upper" surface; the ectal region, exeepting the $45 \mu \mathrm{~m}$ tip, with diagonally arranged jagged seallops which ectally beeome incomplete eneircling serrations: the scallops forming 3 or 4 longitudinal rows in profile, those of each row $10-15 \mu \mathrm{~m}$ apart ; length 2 mature setae 0.83 and 0.94 mm , midshaft width $21 \mu \mathrm{~m}$. Ovaries, tufts oll numerous strings of small oocytes, and fummels in XIII; ovisaes absent. Spermathecae 2 uniform pairs diseharging anteriorly into V'II and IX, eaeh with firm subspherical ampulla and well demarcated moderately slender duet, the ampullae refleeted into VII and VIII; a small spherieal inseminated diverticulum with several internal sperm masses sessile on the ental end of the duct. Length right spermatheea of VIII (H) 2.3 mm ; ratio of tolal length: length duet 1.8 ; ratio length : length divertieulum 4.6.

Material examined : $166^{\circ} 33^{\prime}$ E. $22^{\circ} 10^{\prime} \mathrm{S}$. Mt. Koghis, 11 km. north of Noumea, in clay soil in rainforest at approximately 1.000 metres, 16 Feb. 1977 - holotype (AH 584), paratype 1 aud 3 (0.MG 8886-8887), paratype 2 (BMNII 1978.1.6), paratype 4 (BJ 1977.9.1).

Remarks : The regular, palisade-like cirelets of spines on the penial setae of A. koghis distinguish this large species lrom all others of the genus though the eondition is approaehed by A.chesalieri. The later speeies differs notably from it, as do all other species deseribed in this paper, in possessing a typhlosole. The configuration of the aceessory genital markings in A. koghis is also distinctive.

Acanthodrilus longicystis sp. nov.
(Fig. 1, 5B, 8K, L, 9E ; Pl. I, 8-9, 10-12)
Length 70 mm , width (XV) 3.2 mm , segments 160 . Form moderately slender, circular in cross section ; posterior end clubbed. Pigmentless but elitellar region faintly yellow. Tanylohous, dorsal tongue broad and parallel-sided. First dorsal pore 12/13. Setae a and b of VIII on slight glandular prominenees. All setae present on XVIII; in XII, aa:ab: $b c: c d: d d=5.4: 1.0: 8.2: 0.8: 20.5 ; d d: u=0.45$. Nephropores visible in the forebody as conspicuous white points anteriorly in their segments in d lines but represented in segment II by a minute pore shortly behind the lateral limit of the prostominm, well dorsal to d. Clitellum searcely developed, limits indeterminable. Prostate pores slightly median of a lines, approximately equatorial, in XVII and XIX, each with a eonspieuous white margin on a low mound which almost fills the segnent longitudinally; seminal grooves narrow but very distinct, very strongly convex laterally. Prostate pores of XVII $0.96 \mathrm{~mm}, 0.09$ body eircumference, apart. Male pores on minute papillae, in the seminal grooves in the anterior half of XVIII approximately a distance $a b$ lateral of b. Female pores minute, midway between the setal are and anterior margin of XIV, in ab nearer b. Spermathecal pores on small but distinct papillae in a or $a b$ of $7 / 8$ and $8 / 9$; the posterior pair 1.5 mm . 0.15 body eircumferenee, apart. Accessory genital markings not developed.

Thickest septa 10/11-12/13, strongly thickened. Dorsal blood vessel segmentally doubled, though intersegmentally single, on the intestine ; single antcriorly to this and continuous onto the pharynx; last hearts in XIII; commissural vessels in VII (and further

A

B

Fig. 5. - Genital fields. A, Eudiplotrema sarasini, AH 589 ; B, A. longicystis, holotype, AH 585.
anteriorly ?) - IX dorsoventral only, though still valvular, and each giving a branch to the hody wall. Supra-oesophageal vessel traceable in X (and further anteriorly)-XVI, well dcveloped. A large latcro-oesophageal vessel on each side frcc from the oesophagus running from its conncction beneath oesophagus in VIII through antcrior segments.

Gizzard very large, globose, strongly muscular ; anterior to septum $7 / 8$ but whether in VI or VII indeterminable. Oesophagus dilated in VIII-X ; more slender and not as evidently vaseular in XI-XVII ; caleiferous glands absent. Intestine commencing in XVIII but not widening until XXIII ; the portion in XVIII-XXIII dark in colour, spiral, and forming a distinct region of the alimentary canal ; a well developed hifid laminar dorsal typlosole commeneing in XXX, the two laminae anteriorly with their free edges laterally directed so that the form is $L^{-s h a p e d}$ with negligible vertical limb ; caudally λ-shaped ; caeca absent. Nephridia: a pair of very large compact tufts with innumerable spiral loops, in IV relative to external segmentation; the avesiculate duct of each tuft traced to the anterodorsal region of segment II. Very small tufts almost sessilc on the body wall in III and IV; tufts of V-VII fairly large with tubular, bladderlike duets which in V arc straight, in VI are entally bent and in VII are $>$-shaped with bend lateral ; tufting decreasing posteriorly and nephridia of IX almost simple, retaining the $>$-shaped bladder. In the intestinal region the nephridial bladders are J -shaped with the bend lateral and the shorter, ectal,
limb anterior but this ectal limb may be tortuous; long-stalked preseptal fumel demonstrated in the intestinal region. Small iridescent sperm funnels in X and XI ; small racemose seminal vesicles in IX and XII. Prostates long, slenderly tubular, convoluted ; approximately uniform ; adpressed loops not greatly deformed by contact; those of XVII cxtending into XXVII, those of XIX into XXVIIl ; each with fairly short, tortuous, muscular duct which ectally widens gradually but strongly; gland and duct almost concealed by two penisetal follicles of which the median is very long, extending shortly posterior to the corresponding prostate, but the lateral is less than half as long. Penial seta filiform and sinuous, the ectal tip moderately or strongly hooked and spatulate, occasionally with a ventral broad, shallow gutter extending entally from the tip ; the ectal region ornamented as far apically as the curvature of the tip. Ectally with a scattering of single, anteriorly directed, sharply pointed teeth ($3-5 \mu \mathrm{~m}$) incompletely covering the shaft, usually leaving a bald strip through part of the ornamented region. Further entally teetli adpressed to the shaft. Length mature seta 7.0 mm , midshaft width $19 \mu \mathrm{~m}$. Genital seta slender, gently curving to a pointed, unsculptured tip. The ectal $560 \mu \mathrm{~m}$, excepting the tapered tip, with four or more longitudinal rows of dcep scallops (notches) which are staggered so that those of adjacent rows are not in the same transverse line; those of each row $40 \mu \mathrm{~m}$ apart. The posterior lip of each notch forming a smooth, or slightly irregnlar crescent ; the arrangement breaking up into Iess regularly disposed pits at the ectal limit of sculpturing. Length mature seta 1.6 mm , midshaft width $20 \mu \mathrm{~m}$. Ovaries and funnels not detectable (protandry ?). Spermathecae 2 pairs (the anterior pair slightly the smaller ?), discharging anteriorly in VIII and IX ; each with ovoid, entally narrowed, ampulla and well demarcated, unusually long and slender, sinuous duct; a large reniform diverticulum sessile near onc end at the junction of ampulla and duct, with iridescent sperm masses in a row along its outer margin. Length left spermatheca of IX 3.04 mm , ratio of total length : length duct 1.62 ; ratio length : length diverticulum 4.06.

Matertal examined : 165049^{\prime} E. 21034^{\prime} S., below Col d'Amieu towards La Foa, in roadside traek embankment, in elay soil, 11 Feb. 1977 - holotype (AH 585).

Remarks: A. longicystis resembles A. ignambii, A. layardi and especially A. natalicius and A. rouxi Michaelsen, 1913, in the tortuous spermathecal duct. A. rouxi differs in location of the prostate pores in XIX and XXI and in the form of the penial setae. A. layardi differs notably in its much greater length and the presence of scattered teeth and absence of scalloped sculpturing on the genital setac. A. ignambii is again much longer (200 mm), and the penial setac are not ectally expanded. A. natalicius is closest to A. longicystis, especially in the form of the spermathecae and penial setae (though these are more densely spinose in the former) but differs (significantly ?) in location of the prostatc pores in XVIII and XX and possession of accessory genital markings. Further comparison with A. natalicius is restricted by omissions in the description of the latter.

Acanthodrilus paniensis Michaelsen, 1913
(Fig. 4A, 7K, 8I, J, 9I ; Pl. III, 21-24)
Acanthodrilus paniensis Michaelsen, 1913: 205-207, Pl. VII, fig. 14-16, 48.
Length 150 mm , width 4.2 mm , segments 176 . Form slender ; approximately circular in cross section but some flattening between setal couples and caudal extremity dorsoventrally depressed, tapered, and with distinct dorsal canalicula leading to the vertical, slitlike anus. Pigmented reddish brown dorsally in life. Peristomium equalling segment III in length; prostomium approximately one fourth the width of the peristomium ; tanylobous, slightly tapering to a transverse groove shortly behind midlength, dorsal tongue parallel-sided. Segments III and IV forming a helicometamerc. First dorsal pore 13/14. Slight glandular modifieation around the right ventral setal couple of VIII. All setae present in XVIII ; in XII, aa:ab:bc:cd:dd $=4.6: 1.0: 6.8: 0.7: 18.4 ; d d: u=0.46$. Nephropores clearly visible minute, apparently sphinctered apertures demonstrated in V postcriorly, in $c d$, near the anterior border of their segments. Clitellum not recognizable. Prostate pores equatorial in XVII and XIX in or slightly lateral of b, gaping apertures with tumid margins constituting porophores; seminal grooves, connecting the pores, broad tracts, moderately convex laterally ; male porcs a minute transverse slit shortly equatorial in XVIII, in each tract near its lateral border ; the posterior prostate pores $2.3 \mathrm{~mm}, 0.2$ body circumference, apart. Female pores minute, slightly less than halfway from the setal arc to the antcrior border of XIV, in a. Spermatheeal porcs 2 pairs, distinct small apertures on firm elliptical papillae, $7 / 8$ and $8 / 9$, in b lines ; the posterior pair $2.2 \mathrm{~mm}, 0.19$ body circumference, apart. Accessory genital markings : a pair of eircular pads equatorially in XVIII lateral to b and median to the seminal grooves; a pair of eyclike markings in $16 / 17$ in b and suggestions of these in $17 / 18$ and $19 / 20$.

Thickest septa $12 / 13$ and $13 / 14$, strongly thickened. Last hearts in XIII. Commissurals in (VII ?) VIII and IX dorsoventral only though still valvular and, unlike the hearts, eaeh giving a branch to the body wall. Supra-oesophageal vessel traceable in IX-XIII, well developed. Paired latcro-oesophageal vesscls originating beneath the oesophagus in VIII, passing forwards to the buccal region.

Gizzard large, depressed barrel-shaped in VII (?), immediatcly anterior to the commissurals of VII but septum $7 / 8$ not certainly recognizable behind it; $8 / 9$ completc though delieate; preceded by a less though still strongly muscular shorter proventriculus resembling a weak gizzard. Oesophagus dilated and vaseularized in X-XVI; more slender in XVII and XVIII. Intestine commeneing with abrupt expansion in posterior XVIII but not reaching full width until XXV ; a pair of lateral anterolaterally directed shortly conical eaeca in XXV I ; a deep laminar dorsal typhlosole commeneing gradually in XXVII; absent from the last 30 caudal segments. Nephridia : very large tufts in III with V-shaped duets, the longer, ectal limb of which discharges dorsolaterally at the anterior border of II ; smaller tufts in IV with ectal limb very long, discharging anteriorly in III in $c d$; similar tufts in but restrieted to each of IV and V ; tufts in VI-X with the two limbs almost equal in length contiguous throughout most of thcir lengths. Nephridia in the remainder of the oesophageal region tufted to the extent of several loops and V-shaped with abrupt

Lend posterolateral. Preseptal funnels demonstrated for some anterior tufts and in the intestinal region. Intestinal nephridia simple with J -shaped vesicles, the longer, ental limb passing straight latcrally, the shorter limb swollen before turning down to enter the body wall anterior to the dorsal setal couple, the two limbs at the bend discernible but fused. Free, moderately large, iridescent sperm funnels in X and X1; large racemose seminal vesicles in IX and XII. Prostates tubular, somewhat depressed, partly almost straight, partly closely winding, those of XVII extending into XXI, those of XIX into XXII; each with a very nttscular, ectally strongly widening duct which has one laterally directed hair-pin bend ; the duct and much ol the gland concealed by a single large penisetal follicle, extending into XIX and XXI respectively from XVII and XIX. Penial seta slender, gently curving to a rounded ectal tip. The ectal cxtremity strongly inrolled for a short distance, with a shallow ventral gutter extending as far as a slight transverse anmulation $340 \mu \mathrm{~m}$ from the tip. Eetal to the amulation, individual, anteriorly directed, sharply pointed tecth irregularly clothe the seta to a point $34 \mu \mathrm{~m}$ from the apex. Shaft ental to the annulation devoid of tecth. Length mature seta 6.8 mm , midshaft width $12 \mu \mathrm{~m}$. A long follicle on each side in VIlI projects into IX in which it is connected to the body wall by a ligament and a large tongue-shaped gland on each side of the follicle projects far into the coelom of V III ; but setae not appreciably modified as genital setac. Setae of the ventral couples of VIII and IX are periodically notehed in profile and have transverse partly encireling serrations but each is sigmoid and has a node. A similar ornamentation and form is seen in ventral somatic setae sampled from XIV and from postelitellar segments; length of a ventral seta of VIIl is 0.81 mm (e .2 .5 mm , Michaelesen), compared with 0.63 for a postclitellar seta. Ovaries not seen; funnels postcriorly in XIII ; ovisacs absent. Spermathecac (S1) 2 pairs discharging anteriorly in VIII and IX, each with an ovoid ampulla preceded by an almost equally large, subspherical diverticulum, the latter continuous ventrally as a moderately stout duct and apparently communicating with the ampulla; length right spermatheca of VIII (apex of ampulla to pore) 2.1 mm , ratio total length : length duct 2.1 ; ratio Iength: length diverticulum 2.6.

Matemal examined : $164^{0} 7^{\prime}$ E. $20^{\circ} 34^{\prime}$ S. Mt. Panié, in dark moist soil in rainforest at approximately 1500 metres, (S1) and 500 metres (S2), 14 Feb. 1977 - specimen 1 (AH 586), specimen 2 (BJ 1977.9.6, immature specimen).

Remarks : The new material is identified with A. paniensis with some hesitation. The above description agrees well with that of Michaelsen with the notable exceptions that in the new material accessory genital markings are present, the spermathecal duct is thicker, the genital (?) setae are not terminally flattened, testis-sacs are not demonstrated and seminal vesicles are in IX and XII (not in X and XII). However, Michaflsen noted that on one side or the other genital setac were not developed and was uncertain of the position of the anterior seminal vesicles. Very noteworthy similarities with Michaelsen's description are the presence of prostate like setal glands in VIII, the form and ornamentation of the setae in this segment, the inrolled terminal region of the penial sctae and the large spermathecal diverticula forming a continuation, though here more distinct, of the ampulla.

The new specimen writhed vigorously and was saltatory when exposed.

Acanthodrilus paripapillatus sp. nov.
(Fig. 1, 3A, 8Q, 9H ; Pl. I, 1-4)
Length 46 mm , width (midclitellar) 1.5 mm , segments 112 . Form slender, circular in cross section in the forebody but in the posterior half of the hind body dorsoventrally depressed and keel-fike in $a a$ and $c d$. Traces of dorsal pigmentation persisting in alcohol. Prostomium small and narrow, parallel-sided, tanylobous, lateral margins deeply incising the peristomium. First dorsal pore $9 / 10$ but first perforate $11 / 12$. Conspicuous glandular prominences present around the a and b genital setac of VII (left only), VIII (paired) and IX (right only). All setae present on the segment of the male pores (XX) ; in XII, aa:ab:bc. $c d: d d=5.3: 1.0: 6.1: 0.8: 19.4 ; d d: u=0.48$. Nephropores visible in the forebody from III, small pores in $c d$ near the auterior borders of their segments. Clitellum annular, very strongly developed but narrower than adjacent rcgions; in XIV-XVIII but interrupted ventrally in XVIII by the malc field ; dorsal pores occluded ; nephropores visible ; intersegmental furrows indistinct. Prostate pores in $a b$ of XIX and XXI on small equatorial papillae ; male pores not externally visible ; seminal grooves very narrow but distinct, almost straight, slightly lateral of b lines except at the prostate porophores where they curve medianly towards the pores. Anterior prostate pores $0.5 \mathrm{~mm}, 0.09$ body circumference, apart. Female pores indicated hy a pair of indistinct dark areas anterior to and almost imperceptibly median of setae a of XIV. Spermathecal pores in $7 / 8$ and $8 / 9$ in b, small slits with narrow whitish rims ; the posterior pair $0.8 \mathrm{~mm}, 0.14$ body circumference, apart. Accessory genital markings : a pair of eye-like markings in cach of the 5 intersegments 18/19$22 / 23$, in $a b$, the anterior four pairs contained within a tumid field which is bounded laterally by ridges which form the lateral borders of the seminal grooves; the markings in 22/23 separate and each divisiblc into a porelike centre and a wide elliptical border, the anterior markings having the centre but lacking the distinct bordcr.

Thickest septa $11 / 12$ and $12 / 13$, fairly strongly thickened. Last hearts in XIII. Commissural vessels in VIII and IX dorsoventral only, though still valvular, and, unlike the hearts, each giving a branch to the body wall. Supra-oesophageal vessel traceable in XI (and further anteriorly?) to XVIII. A large latero-oesophagcal vessel on cach side free from the oesophagus originating beneath the oesophagus in IX and passing through anterior segments.

Gizzard very large, elongate cylindroid, strongly muscular, anterior to septum $7 / 8$ which is attenuated, hut a delicate film on its surface probahly represents septum 6/7, placing the gizzard in VI; an equally wide but shorter, collapsible proventriculus preceding it. Oesophagus virtually suppressed by backward extension of the gizzard in VII-IX, fairly wide and seginentally slightly dilated, and vascularized, in X- $\frac{1}{2}$ XIX ; calciferous glands absent. Intestine commenting at $\frac{1}{2}$ XIX but not reaching full width until XXIII in which the large dorsal typhlosole begins ; the latter consisting of two laminae, with free cdges directed laterally, lying in the horizontal plane so that the form is $\mathrm{L}^{\text {-shaped } \text {; the vertical limb negli- }}$ gible anteriorly hut moderately developed caudally; caeca absent. Nephridia : a pair
of large tufts in IV relative to external segmentation discharges via an elongate, bladderlike duct on each side anteriorly in II far dorsally of d lines, each bladder entally dilated and convoluted but its greater, ectal, length passing straight anteriorly. Smaller tufts in III-VI with V-shaped bladders with longer ectal limb; nephridia in VII-IX almost simple, with progressivcly longer ectal limh; small prescptal funnel demonstrated for VIII. In the intestinal region the nephridia arc simple with J -shaped bladders consisting of a wide, long, dorsoposterior ental limb and shorter, narrower, anteroventral ectal limb which is itself shortly recurved at the pore ; a small preseptal funnel is demonstrable with difficulty on the slender neck. Large, iridescent, free sperm funnels in X and XI; small seminal vesicles, minutely loculate, on the anterior septum of XII but none recognizable in IX the posterior septum of which is very delicate. Prostates slendcrly tubular, zig-zagged with adjacent bends closely contiguous and deformed in cross scction by contact ; the anterior prostates significantly larger than the posterior pair, the two pairs extending into XXVI and XXV respcctively, each with long, slender, tortuous weakly muscular duct which entally cnters a hemispheroidal muscular bursa corresponding with the external porophore. Double vas defercns iridescent and clearly visible throughout its length on each side, entering the hody wall, approximately midway between the prostates, in XX, without terminal enlargement. Penial setae : a and b setac in a single follicle on each side in each of XIX and XXI, concealing the prostate ducts and overlying the glands and extending into XXV. Penial scta slender, gently curving to an obtuse, ectal tip which is sometimes transversely concave ventrally; the ectal cxtremity usually devoid of ornamentation. Further entally with anteriorly directed, sharply pointed, individual (occasionally conjoined) tecth ($1-6 \mu \mathrm{~m}$ long) densely clothing the tip, with a lateral band lacking teeth in dorsal and ventral view extending entally. Still further entally, teeth sparsely scattercd over the entirc shaft (occasionally forming 2 rcgular longitudinal rows vicwed ventrally), or grouped to form incomplete, sometimes extensive encircling serrations; length mature scta 2.5 mm , midshaft width $15 \mu \mathrm{~m}$. Genital seta slender, gently curving to a pointed, unsculptured tip ; ectally with deep scallops (more closely spaced ectally) forming 2-3 indefinite longitudinal rows in profile; the posterior lip of each scallop forming a smooth crescent, or jagged with some indistinct teeth; further entally devoid of sculpturing ; length mature seta 0.7 mm , midshaft width $16 \mu \mathrm{~m}$. Ovaries, small tufts of a few, mainly conjoined strings of large oocytes, and funnels in XIII ; ovisacs probably represented by a small sac on each side in XIV considerably above the location of the corresponding funnel. Spermathecae 2 pairs discharging anteriorly in VIII and IX, each with a dorsoventrally depressed, subspherical ampulla and well demarcated, fairly stout, gently tapering duct; an indistinctly differentiated, cushionlike diverticulum with iridescent sperm clusters, scssile dorsally at junction of duct and ampulla and almost as wide as the duct ; the posterior pair considerably the larger. Length right spermatheca of IX 1.26 mm , ratio of total length : length duct 1.88 ; ratio length : length diverticulum 3.5.

Material examined : $164^{\circ} 47^{\prime}$ E. $20^{\circ} 34^{\prime}$ S. Mt. Panié, in dark moist soil in rainforest at approximately 500 metres, 14 Feb. 1977 - holotype (AH 587).

Remarks : A. paripapillatus approaches A. coneensis and A. rouxi Michaelsen, 1913, in the form of the penial and genital setae but differs from these in the shorter spermathecal
duct and the presence of postclitellar genital markings. It resembles only A. rouxi and A. obtusus Perrier, 1872, in location of prostate pores in segments XIX and XXI. A. obtusus is a species inquirendum (Michaelsen, 1913) but differs strikingly from A. paripapillatus in its length of 700 mm .

Acanthodrilus ruber sp. now.
(Fig. 1, 6B, 7E, 8N, O; Pl. III, 25-27, IV, 28-29)
Length 180 mm , width (midclitellar) 10.6 mm , segments 180 . Form moderately stout, ellipsoidal, dorsoventrally depressed in cross section. Vivid reddish plum-coloured in life. Prostomium tanylobous, large, about one third the width of the peristomium, tapering posteriad, dorsal tongue with weak transverse furrow behind midlength. Dorsal pores commencing behind the clitellum (demonstrable with certainty only by expressing alcohol from them when specimen placed in water). Glandular protuberance around each ventral

Fig. 6.- Genital ficlds. A, Acanthodritus cavaticus, specimen 8, AH 579 ; B, A. ruber, holotype, AH 588.
setal couple in VIII. All setae present in the segment of the male pores (XIX) ; slight irregularity in $c d$ caudally ; in XII, aa:ab:bc:cd:dd $=5.3: 1.0: 6.1: 0.8: 19.4 ; d d: u=0.43$. Nephropores intermittently visible, commencing in III, throughout the forebody in cd and in the midbody in d, transverse slits or small circular apertures, apparently sphinctered; not externally visible caudally. Clitellum annular, strongly developed and wider than adjacent segments, sharply delimited at XIV and XVII but the posterior half of XIII possibly with clitellar modification. Prostate pores large gaping orifices, with thick lips constituting porophores, in XVIII and XX in $a b$, penial setae protruding from the anterior pair, the body surface decply depressed between them as far anteriorly as the clitellum ; seminal grooves indistinct glossy bands, strongly convex latcrally. Prostate pores of XVIII $4.3 \mathrm{~mm}, 0.24$ body circumference, apart. Male pores minute transverse slits in the bands approximately equatorially in XIX well lateral of b lines. Female pores minutc, shortly anteromedian of setae a of XIV. Spermathecal pores 2 pairs of small lipless apcrtures almost concealed in intersegmental furrows $7 / 8$ and $8 / 9$, in $a b$; the posterior pair $5 \mathrm{~mm}, 0.25$ body circumference, apart. Accessory genital markings : an indistinct swelling posteromedian to each of the posterior prostate porophores, at $20 / 21$; a narrow transverse pad in XXII filling aa midventrally, and longitudinally extending from shortly behind the anterior margin to the posterior third ; a similar pad at $22 / 23$ extending laterally beyond b lines, contiguous with the pad in XXII and occupying the anterior third of XXIII ; each pad bisected transversely by a double line.

Thickest septa $10 / 11$ and $11 / 12$, very strongly thickencd. Last hearts in XIII. Commissurals in VII (and further anteriorly ?) -IX dorsoventral only. Supra-ocsophageal vessel traccable in IX-XV, weakly developed. A large latcro-oesophageal vessel (median to the commissurals) originating beneath the oesophagus in VIII and passing anteriorly.

Gizzard very large and strongly muscular, in VI, bulb-shaped with anterior, narrower, end poorly delimited from a strongly though less muscular very tortuous foregut which resembles an elongate, contorted gizzard ; the posterior end of the gizzard in X by external segmentation but anterior to septum 6/7. Oesophagus virtually suppressed in VII, elsewhere simple with no notable dilatation or vascularization and lacking extramural calciferous glands. Intestine commencing in XVIII in whicb it almost attains full width ; a very wide, bilaminar dorsal typhlosole, $L^{-s h a p e d}$ with ncgligible vertical limb, commencing in XXIII but absent in posterior caudal segments ; caeca absent. Nephridia with tubular bladder-like ducts, the first three pairs forming conspicuous tufts of which the first pair is by far the largest, discharging respectively at the anterior borders of III (?, pore located but connection of duct not demonstrated), IV and V (followed to pore) ; the ducts tortuous and by IV <-shaped with bend posterolateral ; the first three tufts displaced posteriorly so that the ducts are visiblc running antcrolaterally; tufting continuing to XX but in V posteriorly $<$-shaped duct restricted to the same segment as the tuft; postseptal necks demonstrated for all but the anterior pair of tufts and preseptal funnels presumably present as demonstrated for IV. In the anterior intestinal rcgion the bladders become transverse and are straight except at the ectal and ental ends at each of which they form a close bend, bcing therefore J-shaped at each end. Caudally, although some bladders are bent entally, most are simply J-shaped with ectal bend directed medially. Large iridescent free sperm funnels in X and XI. Very large much divided scminal vesicles in XI and XII. Prostates tortuous, tubular though depressed, those of XVIII

Fig. 7. - A, Acauhodrihts cavalicus, nephridia in sith, specimen 8, All 579. B, A. chabaudi, prostates; C, right nephridium of IV ; D, intestinal nephridim, holotype, AH 580 ; E, A. ruber, caudal nephridium: l , left nephridium of IV, holotype, AH 588 ; G, A. koghis, right nephridium of VII; H, (Top to bottom) right nepluridium of $\mathbf{X X V}$, left nephridium of XXX, right caudal nephridium; I, prostates (preial setae removed), holotype, AH 584 ; J, Eudiplotrema sarasini, prostate gland, AH 589 ; K, A. panionsis, intestinal caecum, specimen 1, All 586.
and XX extending to posterior XXII; eaeh with a fairly short, narrow slightly sinuous museular duct which enters a hemispheroidal muscular swelling corresponding with the external porophore; large cushion-like firm intracoelomic glandular masses located at the posterior border of each terminal swelling. Penisetal follieles single, at each prostate duct, those of XVIII extending into XXI, those of XX into XXII, each follicle containing 6 setac of graded sizes. Penial seta moderately stout and elongate, gently curving to a pointed (oceasionally blunt) slightly hooked eetal tip ; the eetal region nore or less depressed dorsoventrally. Single (often more numerous) sharply pointed, eetally direeted tcetlr ($5-6 \mu \mathrm{~m}$ long) densely clothing the ectal portion of the shaft; further entally teeth ($4-5 \mu \mathrm{~m}$ long) forming irregnlar serrations ; these serrations at approximately $20 \mu \mathrm{~m}$ longitudinal intervals, and numbering 5-6 transversely. A lateral band, lacking tecth in dorsal and ventral view, extends from the tip on eaeh side. Length mature seta 10.5 mm , midshaft width $83 \mu \mathrm{~m}$. Genital seta stont, slightly eurved (almost straight) ; the tip in profile more strongly convex dorsally than ventrally; keeled laterally and almost parallel sided, thus chisel-like with broadly tapering unsculptured extremity. Eetally in profile with numerous transverse to oblique rows of $3-4$ moderately deep seallops; the rows approx. $30-60 \mu \mathrm{~m}$ apart longitudinally; the posterior lip of each scallop with numerous, small, ectally dirceted, pointed teeth. The arrangement breaking up into less regularly disposed pits at the ectal limit of seulpturing. Length mature seta 3.12 mm , midshaft width $63 \mu \mathrm{~m}$. Small, apparently immature ovaries and funnels in XIII; no ovisacs demonstrable. Spermathecae 2 pairs, diseharging anteriorly in VIII and IX but each reflexed into the preceding segment ; each with ovoid-sacciform ampulla and longer, tubular well demareated duct ; a cushion-like diverticulum sessile dorsally on the eetal region of the ampulla where this grades into the duet; length left spermatheca of IX 7.2 mm ; ratio total length of spermatheca : length duct 1.7 ; ratio length: length diverticulum 4.1.

Material examined : $164^{\circ} 47^{\prime}$ E. 20034^{\prime} S. Mt Panié, near surface under moss, in clay soil in rainforest with Pandanus locally, at approximately 1000 metres, 13 Feb. 1977 - holotype (AH 588).

Remarks: A. ruber is distinguished from all other species of Acanthodrilus hy the form of the genital and penial setae and of the male genital field. Loeation of prostatic pores in XVIII and XX is shared only with A. coneensis and A. natalicius Miehaelsen, 1913, hoth very much smaller, distinet speeies. Species resembling it in laving the seminal vesieles in XI and XII are relatively few, viz. A. cavalicus, A. foanus, A. koghis and A. chesalieri.

Genus EUDIPLOTREMA nov.

Plutellus (Diplotrema) (part.); Michaelsen, 1913 : 241.
(non) Diplotrema; Spencer, 1900:31: Jamieson \& Dyne, 1976:447.
Diagnosis : (Tanylobous. Setae lumbricine). Dorsal pores absent. Prostate pores 1 pair separate from or uniting in the body wall with the male pores on XVIII. Holonephrie ; nephridia avesieulate. Prostates tubular, very long (extending through 10 or more segments). Spermatheeae 1 pair, diverticulum with multiple spernı chambers.

Fig. 8. - Spermathecac. A, B, Acanthodrilus cavaticus, specimen 8, R IX, AH 579 : A, lateral, B, dorsal ; C., D, A. chabaudi, holotype, L VIII, AH 580 : C, dorsaI ; D, ventral ; E, F, A. chevalieri, paratype 1, BMNH 1978.1 .9 ; E, R IX lateral ; F, R VIII dorsal ; G, H, A. fabresi, holotype, R IX, AH 583 : G, dorsal, H, ventral ; I, J, A. paniensis, specimen 1, R VIII, AH 586 : I, dorsal, J, lateral; K, L, A. longicystis, holotype, L, IX, AH 585 : K, dorsal ; L, ventral ; M, Eudiplotrema sarasini, holotype, L IX, AII 589 ; N, O, A. ruber, holotype, L IX, AH 588 : N, dorsal ; O, lateral ; P, A. koghis, holotype, R VIII AII 584; Q, A. paripapillatus, holotype, R IX, AH 587.

Description

Prostomium tanylobous. Parietes pigmented. Dorsal pores (alwaty ?) absent. Spermatheeal genital setae absent; ventral setal couples at the prostate pores modified as penial setae. Somatie setae in 8 regular longitudinal rows throughout ; elosely to very widely paired ; the dorsolateral pair (cd) usually significantly wider than the ventrolateral pair $(a b)$. Nephropores typically in d lines. Clitellum sadde-shaped, ineluding the segrment of the female pores. Prostate pores 1 pair, in XVIll, near the male pores or (E. rouxi) uniting with these in the body wall with (typieally) or without a seminal groove eonnecting corresponding prostate and male pores. Female pores a minute pair on XIV, in a to latcral of b. Spermatheeal pores 1 pair anteriorly in IX, in ab. Aecessory genital markings frequently present ; eyelike or transverse pads.

Dorsal blood vessel single or in places double, (always?) eontinuous onto the pharynx. Last hearts in XIII ; those in X-XIII typically latero-oesophageal and preceded by dorsoventral eommissurals. Supra-oesophageal vessel (always ?) present and oesoplageal only. Subneural (always ?) alsent. Gizzard moderate to strong in VI. Oesophagns laeking ealeiferous glands. Intestine (always !") eommeneing in XVII; museular thiekening, caeea and typhlosole (always?) absent. Nephridia holonephridia (always?) avesienlate with preseptal funnel. 'Testes free in X and XI ; seminal vesicles 2 or 3 pairs, in IX and XII, XI and XII or 3 of these. Prostates tuhular, very long, extending through 10 or more segments. Ovaries in XIII, (ahways ?) lan-shaped. Spermathecae 1 pair, in 1X, divertieulum sessile or clavate, (always?) with one or more sperm ehambers.

T'ype-species : Plutellus (Diplotrema) sarasini Michaclsen, 1913.
Đistribution: New Caledonia. 5 species (Michaelsen, 1913).
Species: Plutellus (Diplotrema) culminis, P. (D.) ignambii, P. (D.) modestus, P. (D.) rouxi, P. (D.) sarasini Miehaelsen, 1913.

Eudiplotrema sarasini Miehaelsen, 1913
(Fig. 1, 5A, 7J, 8M, 9C: PI. I, 5-7)
Plutellus (Diplotrema) sarasini Michaelsen, 1913: 249-251, Pl. VIII, fig. 50, 51, text-lig. 11.
lenght 62 mm , width 1.6 mm , segments 100 . Form sleuder eireular in eross seetion, laeking signifieant seeondary annulation. Pigmented reddish brown dorsally. Prostomium tanylobous. Dorsal pores absent. Setae large, in 8 regular longitudinal rows, commeneing on II : ab replaced hy penial setae in XVIII: in XII, aa:ab:bc:cd:dd=3.1: 1.0:4.2:1.0:17.6; $d d: u=0.53$. Nephropores (externally visible only in segments in the vieinity of XVIII) at the anterior margins of their segments in d lines ; small. Clitellum XIII-XVII, but anterior and posterior limits uneertain, largely obliterating the interseg-
ments dorsal to c lines and therefore presumably saddle-shaped ; male genital field : a pair of transversely elliptical male porophores in XVIII each bearing two long, projecting penial setae in a transverse line ; shortly lateral to these lies the prostatic porc ; male pore situated behind the lateral of the two penial setae, near the posterior limit of the porophore, in b line, and connected to the prostatic pore by a seminal groove. Prostate pores 0.55 mm , 0.01 hody circumference, apart. Accessory genital markings subcircular, domed, paired genital markings in $a b$, in intersegments 10/11-16/17 and 19/20-20/21, and a midventral tumescence, each with a pair of depressions, in 17/18-18/19. Female porcs an inconspicuous pair in XIV shortly lateral of and almost imperceptibly anterior to seta b. Spermathecal pores one pair in $8 / 9$ in $a b$, each a small orifice with elliptical lips of which the anterior is the Ionger, $0.6 \mathrm{~mm}, 0.32$ body circumference, apart.

Internal anatomy : septa $9 / 10-11 / 12$ a little stronger than the remainder but only slightly thickened. Dorsal blood vessel continuous onto the pharynx; single in XIII anteriorly ; double in the posterior $2 / 3$ of each segment in XIV posteriorly. Dorso ventral commissural vessels recognisahle in IX to XIIl ; those in IX slender dorsoventral only, sending a branch to the parietes before joining the ventral vessel ; those in X-XIII large and heart like, not branching, and in XII and XIlI, less certainly in X and XI, with a connective from the dorsal and one from the supra-oesophageal vessel. Supra-oesophageal vessel demonstrable in V1II and XIII only. Subneural blood vessel absent.

Gizzard strong, moderately wide but unusually elongate, in VI hut by external segmentation in V II to IX, septa 6/7-8/9 so attenuated as to be almost unrecognizable. Oesophagus in VIII-XIV segmentally swollen and strongly vascularised but extramural calciferous glands absent ; narrower and less vascular in XV-XVI. Intestinal origin indefinite, probably XVII but not strongly widened until XX ; muscular thickening, cacca and typhlosole absent. Nephridia stomate, avesiculate, exonephric holonephrida; nephridial bodies in III-VIII moderate-sized, considerably coiled with avesiculate duct running antero-laterally to discharge anterior to seta d; progressively less coiled posteriad; those of Il with duct discharging anterior to seta d of II but with large much coiled body in IV ; preseptal funnel, one on each side, demonstrated in the intestinal region but nephrostomal necks visible at least as far forward as segment IV ; ectal nephridial ducts at most forming moderately wide straight tubes not warranting designation as hladders. Testes and large much convoluted iridescent sperm funnels 2 pairs, in X and XI ; seminal vesicles 2 pairs, in IX and XII, not much divided ; vasa defcrentia not traceable. Ovaries fan shaped with several strings of large oocytes, and small funnels in XIlI ; ovisacs absent. Prostates one pair with very tortuous, slender muscular ducts in XVIII and XIX and delicate flattened tubular glandular parts in XX-XXX. In longitudinal sections it is seen that the two vasa deferentia of a side unite at the level of the prostate pore and continue as a single duct to the male pore which is separated by 0.1 mm from the prostate pore. Penisetal follicles 2 on each side entering the body wall median to the prostate ducts; extending into XXIII but with a ligament attaching the posterior end of the follicle to the body wall in XXIV ; sinuous penial setae visible through their walls. Penial setae filiform, slightly curved ectally, the tip transversely concave ventrally, strongly flattened and almost parallel sided ; the ectal extremity blunt and jagged ; entally a scattering of ectally directed pointed teeth (approx. 2-3.5 $\mu \mathrm{m}$ long) in groups of two to scveral. Further ectally teeth are blunt and conjoined into incompletely encircling bands; the bands at approximately $5 \mu \mathrm{~m}$ intervals longitudinally; length of a

Frg. 9. - Spermathecae. A, Acauthotrilus cavaticus, specimen R 1X, BJ 1977.9.8; B, A. fabresi, holotype R IX, AH 583 ; C, Eudiplotrema sarasini, holotype L IX, A II 589 ; 1), A. chevalieri, paratype 1, R IX, BMNH 1978.1 .9 ; E , A. longicystis, holotype, L IX, AH 585 ; F, A. chabaudi, holotype, L VIII, AII 580 ; C. A. cavalicus, speeimen 8, R IX, AH579; H. A. paripapillatus, holotype, R IX, AH 587 ; I, A. paniensis, specimen 1, P VIII, AH 586.

Timbe I. -- Intersetal distances in segment XII in Acanthodrilus and Ludiplotrema.
Percentage of circumference

1. caraticus

7 specimens
llin.
Max.
$a b \quad b c$
rd dd de
ch $b a \quad \mathrm{U}^{+}$

Mean

12.6	1.2	12.9	1.5	11.8	1.6	13.9	1.5	8.0
17.1	2.1	15.3	2.2	51.7	2.1	17.1	2.1	10.8
11.6	1.6	14.3	1.8	48.6	1.3	15.1	1.8	8.9

1. chabaudi

Holotype

14.1	1.8	16.0	2.4	45.4	2.2	16.6	1.6	
14.1	1.4	14.0	1.7	39.6	1.6	14.2	1.5	8.1
17.1	1.9	18.1	2.4	19.9	2.2	17.8	1.9	9.2
15.3	1.7	16.4	1.9	16.3	1.9	15.7	1.7	8.9

Max.
Nean

1. cheralieri

Ilolotype
$\begin{array}{lllllllll}12.7 & 2.6 & 1.3 .1 & 1.7 & 15.8 & 1.9 & 17.0 & 2.4 & 7.0\end{array}$
B specimens
Min.
Max.
Mean

1. fabresi

Hololype
$\begin{array}{lllllllll}9.6 & 2.4 & 10.1 & 2.6 & 47.3 & 2.7 & 16.7 & 2.4 & 5.9\end{array}$
A. loghis

Holotype
$\begin{array}{lllllllll}16.2 & 2.1 & 15.9 & 1.3 & 44.7 & 1.1 & 16.7 & 2.1 & 16.0\end{array}$
4 specimens
Min.
Max.
$\begin{array}{lllllllll}1.5 .7 & 1.1 & 15.8 & 1.1 & 1.9 & 1.1 & 16.1 & 1.5 & 1 \text { 1.5. }\end{array}$

Nean

18.3	2.1	17.1	1.1	45.2	1.3	17.1	2.1	16.8
16.8	1.8	16.1	1.3	110	1.2	16.8	1.8	15.5

A. longicystis

Holotype

11.8	2.1	18.0	1.8	14.6	1.6	17.9	2.2	9.9

A. paniensis

Spee. 1
$\begin{array}{lllllllll}11.5 & 2.5 & 16.7 & 1.8 & 45.9 & 1.9 & 17.2 & 2.5 & 11.2\end{array}$
A. paripapillatus

Holotype
$\begin{array}{lllllllll}13.1 & 2.2 & 15.7 & 2.0 & 47.9 & 1.9 & 14.5 & 2.7 & 5.9\end{array}$
A. ruber

Holotype
(Segment 20)
R. sarasini
$\begin{array}{lllllllllll}\text { Spec. } \\ \text { SH } & 589 & 10.1 & 2.9 & 12.5 & 3.1 & 52.8 & 3.1 & 12.5 & 3.1 & 4.6\end{array}$
U : Circumference in min.
mathe seta 3.8 mm , midshaft widh 13 mm . Spermathecae ons pair, opesing anteriorly in IX, cach with subspherical ampulla, slighty longer, stout duct, and a diverliculnm al their j:metion which lorms a narrow depressed sac, about as large as the ampulla, which hears a small lobed probnherance eontaining three or more spem masses ; length lelt spermatheca of $1 \times 1.17 \mathrm{~mm}$, ratio iotal lengith: Iength duct 1.86 ; ratiolongith: length diverticulum 1.83.
 imately 500 metres, 1 Felt. 1977 - 1 specimen 111 - 89 : serial sections of mate imminalia of one side (BJ 1977.9.9).

Remaris: The above account significanly adds to that of Mich semen.

DISCUSSHON

Acanhodrilus

The similarity of the description of the genns Acanthodrilus to the charaeterizations of the Australian genus Diplotrema by Jasiresos and Dyne (1976) and of the North Ameriean genus Diplocardia by Gates (1977) is most striking and indieates their phylogenetic relationship. Acanthodrilus is distinguished by the presence of nephridial bladders. Diplocardia, as defined, appears to differ from Diplotrema only in duplication of the gizzard. There can be little donbt that the threc entities are descendants ol' a Pangean (but ehiefly Gondwanan ?) aeanthodrile fauna. Restriction of vesiculate spceies to New Calcdonia suggests that the vieariating event whieh led to division of the Gondwanan stock into Acanthodrilus and Diplotrema was the rifting ol New Caledonia from Australia shortly after 80 million years ago. Alternatively, it is possible that development (or loss ?) of nephridial hladders was a later response of the scparated stocks to the partieular eonditions of their locations.

It seems probable as Michallsen (1913) singgested that A. mareensis has secondarily dispersed to Maré from New Caledonia. It will be apparent from the generie aeeount that it is duestionable that A. kermadecensis is elosely rclated to the other species of the genus and its inchusion by Lee $(1953,1959)$ is followed only beeausc erection of a separate genus for it does not appear warranted in the present state of our knowledge of the wider acanthodrile famna.

Eudiplotrema

Tubular prostate glands are regarded as modifieation of former long series of setal glands whieh initially had no speeial relationship with vasa deferentia (Jamieson, 1971b). In the typieal acanthodrilin eondition the male duets, opening on segment XVIII, remain discrete from the prostate glands whieh have pores on XVII and XIX. In all perionyehin Megascolecidae, however, with the sole cxception of Eudiplotrema, the vasa deferentia have united with the prostates or their duets. Even in Eudiplotrema rouxi the first stage in
union oceurs with the vasa deferentia joining the prostate ducts within the body wall. New Catedonia thus contains, at least with regard to male terminalia, the most primitive known perionychins. It is tempting to infer evolution ol the Eudiplotrema condition from the acauthodrilin condition by the megascolecin reduction (loss of posterior prostates and movement of the pares of those ol XVIl into XVIII, into the vicinty of the male pores) an origin postulated by Michaelsen (1903) for the Megascolecinae and accepted by Stephensox (1930). Micuablsen (1913) rightly points out that retention of only the posterior spermathecal pores in what is now Eudiplotrema suggests that it is the anterior pair of prostates whieh has been retained. This anterior pair would have migrated into XV'll. As the acanthodrifin arrangement may be transposed $\mathrm{l}-3$ segments posteriorly in New Catedonian acanthodriles the possibility of retention of anterior prostates in a lineage with the prostate pores on XVIH and XX and movement of the mate pores forwards into XVIII lrom XlX may also be considerect. Whether perionyehins originated by rednction of the acanthotritin arrangement or not, an especially close relationship hetween Eudiplotrema and Actonthodritns cannot be proved though there is no strong evidence against it. Shared somatic characters which are sufficienty uncommon for their co-occurrence to have rathe low probability without relationship are the tanylobous prostominm, location of last hearts in XIII and perhaps the presence of penial setae which are frequently absent in perionychins. Whether or not Eudiplotrema has arisen from an acanthodrile stock it is not now assignable 10 the Aeanthodrilinae. It is placeable in the Megascolecinae (Micirablsen, 1913, Jameson and Drae, 1976) ant its taxonomic and phylogenetie status relative to other perimychin genera require discussion.

Micuaflsex (1913) considered, hot surprisingly, that the New Caledonian species which he placed in Plutellus (Diplotrema), here Eudiplotrema, were elosest to "Plutelhas" pygmuens. However, this requires testing and neither entity is assignable to Plutellus s. strict. Whereas allinity with Diporochaeta and related genera, inchoding the junior synonyms Perionychella and V'esiculodrilus, is suspected. Descriptions of P. pygmaeus and of the Eudiplotrema species other than that described in the present work are too incomplete to permit a rigorous phylogenetic analysis but some attempt is made here. Fig. 10 shows the phylogenctic aflinities of Eudiplotreme with the " diporochaetoid" genera as deduced by application of the principles of phylogenetic systematics proposed by llennig (1966) but using a necessarily limited set ol attrihutes. Diporochaeta, Perionychella, Graliophilus, Simsia and Vesicutodritus, are represented hy their type-species, and the very distinctive South Anstralian Diporochaeta inconstans (Jamesos, $1974 a$), and P. pygmaens are also included. The characters employed and their states for the varions species are given below (fig. 10) and their states are indicated in the phylogram by the corresponding numbers.

For P. pygmaens the states of three of the seven characters employed are unknown and have been scored as being identical with those in Eudiplotrema sarasini. However, it must be stressed that when pygmaeus is eliminated from consideration the remaining species have heen shown empirically to have the same Hemigian relationships for these seven characters.

The following conclusions are drawn from the phylogranı with the reservations expressed. Until a complete revision of Eudiplotrema and P. pygmaeus is made, and perhaps even then, the phylogeny can only he regarded as heuristic and some discussion of the effects of including additional characters and species accompanies these conclusions.

Fig. 10. - Phylogram based on 7 characters, of the gemus Eudiptotrema (represented by tho bpe-species, E. sarasini) relative to other "diporochactoid" genera. Numerals in eircles are the cotal seore of apomorpli (advanced) alluibute-states for each species. Numbers on the phylogtam refor to the eharaeter, the number of transverse lines across each lineage indicating the number of steps takm in the character concerned. The number of shared apomorphies (synapomorphies) at each division or diehotomy is indicaled in the seale labelled synapomorphy. Characters are: (1) Setae $8(0)$ or more (1) per segment ; (2) nephropores ventro- (0) or dorso-lateral (1); \{3) male and prostate pores separato
 sole absent (0) or present (1); (7) spermaltecal divericulum absent (0), multiloeutate (-1) or miloculate (1).

Close relationship of the avesiculate Perionychella Michaelsen (I907) and vesiculate Vesiculodrilus Janieson (1973), both Australian, and their synonymy in Diporochata (type-specics from New Zealand) which was recently advocated (Jnmesox, 1976) is confirmed. Furthermore, distiuction of the Australian Craliophilus lamieson (1970) from Diporochata which has hecome increasingly dillicult at least for the G. georgei group (IAmeson, 1976) is uncertain. However, in Gruliophilus the male ducts typically join the prostate ducts much further ectally than in Diporochaeta and synomymy of the two canot be considered proven.

Plutlus pygmaeus, even when three of the scren characters are inferred as identical with those in Eudiplotrema, groups with and is taxonomically inseparable fromi Diporochaeta.

Notable differences from Eudiplotrema are the epilobous prostomium, the two pairs of spermatheeal pores, single (not multiple) seminal chamber in the spermatheeal diverticulum, the short prostates and fusion of the male ducts with the ental ends of the prostate duets. Apparent shared absence of dorsal pores may be a convergence.

The South Australian Perionychella inconstans Jamieson (1974a), which differs from other diporochaetoids in having ventrolateral nephropores, is seen to be the plesiomorph sister-group ol Diporochaeta-through-Graliophilus. It may be retained in Diporochaeta or assigned to a new genus but such a decision must await description of a second South Australian species with similarly eharaeterized nephropores in our collections. Ereetion of a new gemus would be consistent with the dismemberment ol the large and variable genus Diporochaeta which would be expected, and desirable, if an Itemigian analysis of a large number of species were nodertaken.

The South-east Anstralian genus Simsia is retained as the plesiomorph sister-group of Diporochaetu-through-P. inconstans (Diporochaeta s. lat.).

Etadiplotrema appears to he plesiomorph sister-group of the other compnted diporoehaetoids and is far removed from the synupatric Plutellus pygmaeus. If E. rouxi is included in the computation lor the same set of characters, it is found to group with P. pygmaeus in Diporochata s. lat. while E. sarasini remains distinct. However, the similarities between E. rouxi, E. sarusini and the other three speeies here grouped in Eudiplotrema are so striking, as sumnarized in the generic diagnosis, that they are here held to represent a monophyletie group distinet from P. pygmaeus.

The phylogram has important zoogeographie implieations. If P. pygmaeus is correctly placed phylogenetically and if the presence of it and Eudiplotrema on New Caledonia is not the result of marine dispersal, the stem-forms which gave rise to them, to the Australian and New Zealand diporochaetas and to Simsia must have formerly oceurred in the combined New Caledonia-Austratia. Furthermore, the oeeurrence of Diporochaeta in lndia (Jamieson, 1977) suggests that this genus existed before the much earlier separation of India from Gondwanaland. Absence of perionychins, including Diporochata, from Afriea suggests that they originated in residual Gondwanaland after the very carly Triassic separation of Africa. Alrican Mrgaseolecinae are eonsidered by the authors to have probably originated from acanthodriles, not from perionyehins. Absence from South America is less easily explained and raises the possibility that Diporochaeta ($=$ Plutellus) peregrina (Cernosvitov, 193位 may be Sonth Ameriean as stated by Cernosvirov but questioned by Jameson (1975). Altrmatively, Diporochaeta may not have suecessfully dispersed via Tertiary Antarctica to South Anteriea, or may have been eliminated there by the highly suceessful Glossoscolecidae.

In conclusion, New Catedonia is seen as the sole refuge of the only perionychin genus with separate male and prostalic pores, the ancestral condition of the trilse and of the Megascolecinae as a whole.

Acknowledgements

The authors are grateful to the Dircctor and Dr. G. Fabres of ORSTOM New Caledonia for facilities and to the Electron Mieroscope Centre, University of Queensland, for processing the
scamning micrographs. This study was made possible ly Australian Research Grants Committee and Australian Biological Survey support. Nll anatomical drawings are hy the senior author. Mrs V. Maume is thanked for her ellicient typing.

REFERENCES

Beddand, F. E., 1886. - Note on the Structure of Large Species of Earthworm from New Caledonia. Proc. zool. Soc. Lond., 1886 : 169.
Cernosvitov, L.., 193́4. - Les Oligochètes de la Guyane Française et d'autres Pays de l'Amérique du Sud. Bull. Mus. nutn. Mist. nat., Paris, $2^{\text {e }}$ sér., 6 (1) : $47-59$.
Gates, G. E., 1977. - Hore on the Earthworm Genus Diplocardia. Megadrilogica, 3 (1): 1-18.
Griffitins, J. R., 1971. -- Reconstruction of the South-West Pacific Margin of Gondwanaland. Nature, 234: 203-207.

- 1974. - Revised Continental Fit of Australia and Antarctica. Nature, 249 : 336-338.

Griffithis, J. R., and R. Varnf, 1972. - Evolution of the Tasman Sea, Daçuarie Ridge and Alpine Fault. Nature Physical Science, 235 : 83-86.
Hennig, W., 1966. - Phylogenetic Systematics. Univ. Ill. Press, L'rhana.
Jamieson, B. G. Ml, 1971a. - A review of the Megascolecoid earthworm genera (Oligochaeta) of Australia. Part II - The suhfamilies Ocnerodrilinae and Acanthodrilinae. Proc. R. Soc. Qd., 82 (8) : 95-108.

- $1971 b$. - In: Brinkhurst, R. O., and B. G. M. Jameson, The Aquatic Oligochaeta of the World. Oliver and Boyd; Edinburgh.
- 1971c. - Description of the type-species of the earthworm genera Plutellus and Digaster (Megascolecidae : Oligochaeta). Bull. Mus. natn. Ilist. nat., Paris, 1970 (1971), 2e sér., 42 (6) : 1300-1310.
- 1971d. - Earthworms (Megascolecidac : Oligochaeta) from Western Australia and their Zoogeography. J. zool., London, 165 : 471-50'́.
- 1973. - Earthworns (Megascolecidae : Oligochaeta) from Mt. Koscinsko, Australia. Rec. Aust. Mus., 28 (11) : 215-252.
- 1974a. - The Earthworms (Oligochaeta : Megascolecidae) of South Australia. Proc. R. Soc. S. Aust., 98 (2) : 79-112.
- 1974b. - Generic type species and other Megascolecidae (Anmelida, Oligochaeta) in the Museum of Systematic Zoology, University of Turin. Boll. Musei Zool. Anat. comp. R. Univ. Torino, 8 : 57-58.
- 1975. - Catalogue of the named Negascolecidae (Oligochaeta : Annelida) in the National Museum of Natural History, Paris. Bull. Mus. natn. IIist. nat., Paris, 3e sér, no 286, \%ool. 196: 129-154.
- 1976. - The genus Diporochaeta (Oligochaeta : Megascolecidar) in Queensland. Zool. Verh., Leiden, 149 : 1-57.
- 1977. - Preliminary descriptions of Indian earthworms (Megascolecidae : Oligochaeta) from the Palni Hills. Bull. Mus. natn. Mist. nat., Paris, 3^{e} sér., no 450, 7ool. 313: 477-502.
Jamieson, B. G. M., \& G. R. Dyne, 1976. - The Acanthodriline Earthworm Genus Microscolex (Diplotrema) (Megascolecidae : Oligochaeta) in the Northern Territory of Australia. Aust. J. Zool., 24: 445-476.

Jardine, N. \& D. McKenzie, 1972. - Continental Drift and the Dispersal and Evolution of Organisms. Nature, 235 : 20-25.
Lee, K. E., 1953. - A Note on the Earthworm Fauna of the Kermadec lslands. Trans. R. Soc. N.Z., 81 (1) : 49-51.

- 1959. - The earthworm fauna of New Zealand. Bull. V.\%. Dep. scient. ind. Res., 130 : 1-486.

Michaelsen, W., 1888. - Die Oligochaeten von Süd-Georgien. Jb. hamb. wiss. Anst., 68 : 55-73. - 1897. - Die Terrieolen Madagassisehen lnselgebiets. Abh. senckenb. naturforsch. Ges., 21: 217-252.

- 1899. - Oligochäten von den Inseln des Paeific, nebst Erorterungen zur Systematik der Megascoleciden. Zool. Jb. (Syst.), 12: 211-246.
- 1900. - Das Tierreich, 10. Fricdländer, Berlin, 1-575.
- 1903. - Die geographisehe Verbreitung der Oligoehaeten. Friedländer, Berlin.
- 1905. - Die Oligoehaeten der deutschen Südpolar-Expedition 1901-1903. Dt. Südpol.Expedit., 9, Zool. 1: 1-58.
- 1907. - Oligochaeta. In : Die Fanna Südwest-Australiens. 1 (2): 117-232. Gustav Fischer Jena.
- 1913. - Die Oligoehäten von Neu-Caledonien und den benaehbarten Inselgruppen. In : F. Sarasin \& J. Roux. Nopa Caledonia, Kreidel, Wiesbaden, Zoologie, 1, 3 (5): 173-280 + plates.
Perrier, E., 1872. - Reeherches pour servir à l'histoire des lombriciens terrestres. Nour. Archs Mus. Hist. nat., Paris, 8:5-198 +4 plates.
Pickford, G. E., 1932. - Oligochaeta Part Il. Earthworms. "Discovery" Rep., Cambridge, 4 : 265-292.
- 1937. - A monograph of the aeanthodriline earthworms of South Africa. Heffer, Cambridge.
Splencer, W. B., 1900. - Further descriptions of Australian earthworms Part 1. Proc. R. Soc. Vict., n.s., 13 (1) : 29-67.
Stephenson, J., 1930. - The Oligoehaeta. Oxford, Clarendon Press.
Manuscrit déposé le 23 nosembre 1977.

PLATE I
Scanning electron micrograpls of penial and genital setae. 1-2, 4. - Penial setae, Acanthodrilus paripapillatns (H).
3. - Gonital seta, I. paripapillatus (H).

5-7. - Penial setae, Linliplotrema sarasimi (11).
8-9. - Cenital setae, 1. longicystis (H).

PLATE II

Scanning electron micrographs of penial setae.
10-12. - Acanthodrilus longicystis (H).
13-15. - A. jabresi (II).
16-18. - A. chabaudi (1)2).

$40 \mu \mathrm{~m}$

13

16

$11 \quad 20 \mu \mathrm{~m}$

14

17

$15 \quad 20 \mu \mathrm{~m}$

PLATE II

PLATE III

Scanning electron micrographs of penial and genital setac.
19. - Penial seta, Acanthodrilus chabaudi (P2).
20. - Genital seta, A. chabaudi (P2).

21-24. - Penial setae, A. paniensis (H).
25-27. - Penial setae, A. rubar (II).

PLATE IV
Scanning electron micrographs of penial and genital setac
28-29. - Genital setae, Acanthodrilus ruber (H).
30-33. - Penial setae, A. cavaticus (30-31 S. 2; 32-33 S. 6).
34-35. - Genital setae, A. cavaticus (S. 6).
36. - Penial seta, A. koghis (P1).

$28 \quad 100 \mu \mathrm{~m}$

31

$29 \quad 40 \mu m$

$32 \quad 40 \mu \mathrm{~m}$

 33
$20 \mu \mathrm{~m}$

PLATE IV

PLATE V

Scaming electron micrographs of penial and genital sctae.
37-38. - Penial setac, Acanthodrilus koghis (P1).
39-40. - Genital setae, A. koghis (P1).
41-15. - Penial setac, A. chevalieri (P1).

[^0]: * Zoology Department, University of Queensland, St. Lucia, Brisbane 4067, Australia.

[^1]: 1. Named for Professor A. G. Chabaud, Laboratoire de Zoologie (Vers), Muséum national d'Histoire naturelle, for his kind encouragement of our work.
